
How to Scala
Textbook Ch. 1.1-1.6, 1.8-1.9

CSE 250
Lecture 1

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Announcements

● AI Quiz on Autolab available now.
○ Due Weds Sept 7 @ 11:59 PM
○ Submit as many times as you want
○ To pass the class, your final submission must indicate that you have

satisfied the requirement (1.0 out of 1.0 score)
○ If you don’t have access to CSE-250 on Autolab, let course staff

know.

● PA 0 will be assigned in the next 24 hr

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Why Scala?

● Strongly Typed Language
○ The compiler helps you make sure you mean what you say.

● JVM-based, Compiled Language
○ Run anywhere, but also see the impacts of data layout.

● Interactive REPL Interpreter
○ It’s easy to test things out quickly (more on this later).

● Well Thought-Out Container Library
○ Clearly separates data structure role and implementation.

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Environment

● IntelliJ
○ Ubuntu Linux
○ MacOS
○ Windows

● Emacs + SBT
○ Ubuntu Linux
○ MacOS
○ Windows / WSL

Projects come with an IntelliJ workspace and a SBT build.sbt file

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Hello World

object HelloWorld {

 def main(args: Array[String]): Unit =
 {
 println("Hello, World!")
 }

}

Function
definition

TypeEverything is always enclosed in a class

‘=’ is how you
define the
function

Brackets in types read as “of” (e.g., “Array of String”)

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Coding Style is Important

def doThings() = {
 val IlikeLlamas = 10
val PeachesAreGreat = for (i <- 1 to 5) yield i

 val QQ = PeachesAreGreat.map(_+ILikeLlamas)

 // This is a for loop.
 for (q <- QQ) println(q)
 // This is a loop with a 4.
 for (i <- 0 until 4) println(i)
 5
}

Indentation?

Names?

Useful comments?

Scala features?

Braces?

Return value?

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Coding Style is Important

● Indent bracketed code uniformly.

● Give variables semantically meaningful names.

● Use comments to convey the “why” of your code, not the what.

● Scala has MANY ways to express identical concepts. Pick one and be consistent.

● Braces aren’t required, but can help to avoid bugs.

● Clearly indicate return values

● Imagine you’re writing a letter to future-you…
○ ...help future-you (and the TAs/me) understand.

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Ways to succeed

● Never start with code.

● What do you have? How is it structured?
○ Draw diagrams
○ Use examples

● What do you want? How should it be structured?
○ Same as above

● How do the components map from one to the other
○ Connect the diagrams
○ Pseudocode: Break the big problem down into smaller ones

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Ways to Obtain Assistance

● Explain what you’ve tried
○ Test cases that fail
○ Approaches that don’t work

● Explain what you are trying to accomplish and why
○ Make sure your interlocutor has all the context

● Follow code style guidelines

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

● Guarantee: If you bring us (mostly working) pseudocode, the TAs and I
will help you translate it to Scala.

● Translation Challenges:

○ Syntax (e.g., “I don’t know how to break out of a for loop”)

■ Ask on Piazza, Office Hours, Recitation; We will help you!

○ Semantics (e.g., “I don’t know how to insert into a linked list”)

■ Ask, but we’ll ask you to be more precise

● Most questions I get about syntax are usually asking about semantics.

If you still don’t feel comfortable with Scala

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 11 /

Scala

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Primitive Types

Type Description Examples
Boolean Binary value true, false

Char 16-bit unsigned integer ‘x’, ‘y’

Byte 8-bit signed integer 42.toByte

Short 16-bit signed integer 42.toShort

Int 32-bit signed integer 42

Long 64-bit signed integer 42l

Float Single-precision floating-point number 42.0f

Double Double-precision floating-point number 42.0

Unit No value ()

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Primitive Types are “sort of” Objects

Literally Anything

Any Primitive Value
Any Java-style

Object

(image: Scala-Lang Tour, Scala Type Hierarchy https://docs.scala-lang.org/tour/unified-types.html)

https://docs.scala-lang.org/tour/unified-types.html

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Every Expression Has A Type

● Optionally annotate anything with “: type”

− Variables (declares the variable’s type)
− Functions (declares the return type)
− Parenthesized arithmetic (sanity checks the return type)
− If you don’t annotate, Scala will try to infer it.

val x: Float = (5 / 2.0).toFloat

val income = 15 + 10.2 * 9.3f

def lotsOfFun(x: Int) = “fun” * x

Why?

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Inconsistent Types

val res = if (x > 0) { “positive” * x }
 else { -1 }

What type does res have?

A: String

B: Int

C: Any

D: AnyRef

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Inconsistent Types

val res = if (x > 0) { “positive” * x }
 else { -1.toString }

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Every Block has a Return Value/Type

def doThings() = {
 val IlikeLlamas = 10
 val PeachesAreGreat = for (i <- 1 to 5) yield i

 val QQ = PeachesAreGreat.map(_+ILikeLlamas)

 // This is a for loop.
 for (q <- QQ) println(q)
 // This is a loop with a 4.
 for (i <- 0 until 4) println(i)
 5
}

What value is
returned?

A: 10

B: IlikeLlamas

C: 5

D: 4

The last line of every block is its value

Don’t forget to include the ‘=’ in a function definition

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Blocks for Assignments

val blockAssign = { val x = 10; val y = 20; (x, y) }

val butterBlock = {
 val pastry = “croissant”
 val flavor = “PB&J”
 flavor + “ “ + pastry
}

Separate multiple instructions on one line with semicolons

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Mutable vs Immutable

● Mutable

− Something that can be changed
● Immutable

− Something that cannot be changed

Mutable state can be updated, but is harder to reason about.

val

var

value that cannot be reassigned (immutable)

variable that can be reassigned (mutable)

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Val vs Var

scala> val s = mutable.Set(1, 2, 3)

scala> s += 4
res0: s.type = HashSet(1, 2, 3, 4)

Why are we allowed to modify s?

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Scala Class Types

● class
○ Normal OOP type (instantiate with ‘new’)

● object
○ A ‘singleton’ class; Only one instance

● trait
○ A ‘mixin’ class; Can not be instantiated directly

● case class
○ Like class, but provides bonus features

A class can inherit from one superclass and multiple traits

©Oliver Kennedy, Eric Mikida. The University at Buffalo, SUNYFall 2022

Companion Objects

● An object with the same name as a class (same file)

− Global (‘static’) methods pertaining to the class
− e.g., to avoid ‘new’:
class Register(val x : Int) {
 def addValue(y: Int) = x + y
}
object Register {
 def apply(x: Int) = new Register(x)
}
scala> val reg5 = new Register(5)
reg5: Register = Register@146f3d22
scala> val reg10 = Register(10)
reg10: Register = Register@43b172e3

Scala shorthand: foo(x) is the same as foo.apply(x)

