
Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

CSE 250
Data Structures

Day 02
Scala

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Announcements

● AI Quiz on Autolab available now.
○ Due Weds Sept 7 @ 11:59 PM
○ Submit as many times as you want
○ To pass the class, your final submission must indicate that you

have satisfied the requirement (1.0 out of 1.0 score)
○ If you don’t have access to CSE-250 on Autolab, let course

staff know.

● PA 0 will be assigned in the next 24 hr

Why Scala?

● Strongly Typed Language
○ The compiler helps you make sure you mean what you say.

● JVM-based, Compiled Language
○ Run anywhere, but also see the impacts of data layout.

● Interactive REPL Interpreter
○ It’s easy to test things out quickly (more on this later).

● Well Thought-Out Container Library
○ Clearly separates data structure role and implementation.

Environment

● IntelliJ
○ Ubuntu Linux
○ MacOS
○ Windows

● Emacs + SBT
○ Ubuntu Linux
○ MacOS
○ Windows / WSL

Labs will come with an IntelliJ workspace and an SBT build.sbt file

Coding Style is Important!

Indentation

Names

Comments

Consistency

Braces

Return values

def doThings() = {
val someString = 42

val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

Coding Style is Important!

Indentation

Names

Comments

Consistency

Braces

Return values

def doThings() = {
. . val someString = 42
. . val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

Coding Style is Important!

Indentation

Names

Comments

Consistency

Braces

Return values

def doThings() = {
val someString = 42

val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

Coding Style is Important!

Indentation

Names

Comments

Consistency

Braces

Return values

def doThings() = {
val someString = 42

val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

Coding Style is Important!

Indentation

Names

Comments

Consistency

Braces

Return values

def doThings() = {
val someString = 42

val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

Coding Style is Important!

Indentation

Names

Comments

Consistency

Braces

Return values

def doThings() = {
val someString = 42

val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

Coding Style is Important!

Indentation

Names

Comments

Consistency

Braces

Return values

def doThings() = {
val someString = 42

val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

Coding Style is Important!

Indentation - indent bracketed code uniformly

Names - give variables semantically meaningful names

Useful comments - convey the “why” not the “what”

Consistency - many ways to express concepts, pick one and be consistent

Braces - like indentation, braces are not required, but can help avoid bugs

Return values - clearly indicate them

Coding Style is Important!

Indentation - indent bracketed code uniformly

Names - give variables semantically meaningful names

Useful comments - convey the “why” not the “what”

Consistency - many ways to express concepts, pick one and be consistent

Braces - like indentation, braces are not required, but can help avoid bugs

Return values - clearly indicate them

This isn’t just for our benefit…you will be
reading your code more than anyone!

Help yourself out!

Some Best Practices

● Never start with code!
○ Plan out what you are trying to do
○ Think about the bigger picture first

● Figure out what you have. How is it structured?
○ Draw (on real paper) diagrams
○ Construct examples

● What do you want to get, and how should that be structured?
○ Same as above

● How do you get from one to the other?
○ Connect the diagrams
○ Pseudocode!!! (break the big problem down into smaller ones)

What if you get stuck?

● Explain exactly what you have tried
○ Which test cases fail? How do they fail? Have you written your own?
○ What other things have you tried which don’t work?

● Explain what you are trying to accomplish and why
○ Context matters
○ Sometimes figuring out the what and the why can already uncover

misunderstandings
● Follow coding style guidelines! It will be easier to help you.

Still stuck?

● Guarantee: If you bring us (mostly working) pseudocode, the TAs and I will
help you translate it to Scala.

● Translation Challenges:
○ Syntax (e.g., “I don’t know how to break out of a for loop”)

■ Ask on Piazza, Office Hours, Recitation; We will help you!
○ Semantics (e.g., “I don’t know how to insert into a linked list”)

■ Ask, but we’ll ask you to be more precise
● Oftentimes questions about syntax are actually asking about semantics.

Still stuck?

● Guarantee: If you bring us (mostly working) pseudocode, the TAs and I will
help you translate it to Scala.

● Translation Challenges:
○ Syntax (e.g., “I don’t know how to break out of a for loop”)

■ Ask on Piazza, Office Hours, Recitation; We will help you!
○ Semantics (e.g., “I don’t know how to insert into a linked list”)

■ Ask, but we’ll ask you to be more precise
● Oftentimes questions about syntax are actually asking about semantics.

Ultimately, you aren’t here to learn Scala. You
are here to learn about data structures.

If Scala is tripping you up, we want to help.

Now…onto some Scala

Primitive Types in Scala

Type Description Examples
Boolean Binary value true, false

Char 16-bit unsigned integer ‘x’, ‘y’

Byte 8-bit signed integer 42.toByte

Short 16-bit signed integer 42.toShort

Int 32-bit signed integer 42

Long 64-bit signed integer 42l

Float Single-precision floating-point number 42.0f

Double Double-precision floating-point number 42.0

Unit No value ()

image: Scala-Lang Tour, Scala Type Hierarchy [https://docs.scala-lang.org/tour/unified-types.html]

Literally Anything

Any Primitive Value Any Java-style Object

Every Expression has a Type

Optionally, you can annotate anything with “: type”
● Variables (declare the type)
● Functions (declare the return type)
● Parenthesized arithmetic

Anything you don’t annotate, Scala will try to infer

val cost: Float = (7 / 2.0).toFloat

val income = 15 + 10.2 * 9.3f

def howCute(x: Int) = “Aw” + “w” * x

Every Expression has a Type

Optionally, you can annotate anything with “: type”
● Variables (declare the type)
● Functions (declare the return type)
● Parenthesized arithmetic

Anything you don’t annotate, Scala will try to infer

val cost: Float = (7 / 2.0).toFloat Float

val income = 15 + 10.2 * 9.3f Double

def howCute(x: Int) = “Aw” + “w” * x Int => String

Inconsistent Types

val indicator = if (x > 0) { “positive” * x }

 else { -1}

What is the type of indicator?
A: String
B: Int
C: Any
D: AnyRef

Inconsistent Types

val indicator = if (x > 0) { “positive” * x }

 else { -1 }

What is the type of indicator?
A: String
B: Int
C: Any
D: AnyRef

Answer: C
The if clause is a String (AnyRef)
The else clause is an int (AnyVal)

Inconsistent Types

val indicator = if (x > 0) { “positive” * x }

 else { -1.toString }

Now the type of indicator is String

Every Block has a Return Value/Type

def doThings() = {
val someString = 42

val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

What is the return
value of this horrific
block of code?

Every Block has a Return Value/Type

def doThings() = {
val someString = 42

val xyz = for (i <- 1 to 5) yield i
val QQ = xyz.map(_+someString)

// This is a for loop.
for (q <- QQ) println(q)

// this is also a for loop
for (i <- 0 until l4) println(i)

5
}

What is the return
value of this horrific
block of code?

The last line of
every block is its
value

Assignments using Blocks

val point = { val x = 10; val y = 20; (x,y) }

val name = {

val first = “Eric”

val last = “Mikida”

first + “ “ + last

}

Assignments using Blocks

val point = { val x = 10; val y = 20; (x,y) }

Value of point: (10, 20)

val name = {

val first = “Eric”

val last = “Mikida”

first + “ “ + last

} Value of name: “Eric Mikida”

Assignments using Blocks

val point = { val x = 10; val y = 20; (x,y) }

(notice the semicolons for the single-line assignment)

val name = {

val first = “Eric”

val last = “Mikida”

first + “ “ + last

}

Mutable vs Immutable

Mutable

Can be changed

var variable that can be
reassigned

Immutable

Cannot be changed

val value that cannot be
reassigned

Mutable state is more flexible (can but updated), but it is harder
to reason about!

Will this work?

val set = mutable.Set(1,2,3)

set += 4

Will this work?

val set = mutable.Set(1,2,3)

set += 4

Yes!
After executing this code, set will point to a mutable set containing 1, 2, 3 and 4!
The key here is “points to”.
set was assigned a reference that points to a mutable set
We did not change that reference (we followed the rules, set is immutable)
What we changed was the object being referenced

Scala Class Types

● class
○ Normal OOP type (instantiate with ‘new’)

● object
○ A ‘singleton’ class; Only one instance

● trait
○ A ‘mixin’ class; Can not be instantiated directly

● case class
○ Like class, but provides bonus features

Companion Objects

An object with the same name as a class (in the same file)

● Defines global (static) methods for that class
● Useful, for example, to avoid directly using ’new’
class Register(val x: Int) {

def addValue(y: Int) = x + y
}
object Register {

def apply(x: Int) = new Register(x)
}
val reg = Register(10) ← Creates a new register instance

Syntactic sugar: In Scala foo(x) is the same as foo.apply(x)

