CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu

Dr. Oliver Kennedy okennedy@buffalo.edu

212 Capen Hall

Day 07 Runtime Analysis with Examples Textbook Ch. 7.3-7.4

Announcements

- I'm back (obviously...)
- PA1 due on Friday at 11:59pm
 - Be wary of availability after 5:00pm...

Recap of Runtime Complexity

Big-0

- Growth functions are in the **same** complexity class
- If f(n) ∈ Θ(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n) steps.

Big-O

- Growth functions in the **same or smaller** complexity class.
- If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it may be even faster).

Big-Ω

- Growth functions in the **same or bigger** complexity class
- If f(n) ∈ Ω(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n) steps (but it may be even slower)

Recap of Runtime Complexity

Big-**O** – Tight Bound

- Growth functions are in the **same** complexity class
- If f(n) ∈ Θ(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n) steps.

Big-O – Upper Bound

- Growth functions in the **same or smaller** complexity class.
- If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it may be even faster).

Big - Ω – Lower Bound

- Growth functions in the **same or bigger** complexity class
- If f(n) ∈ Ω(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n) steps (but it may be even slower)

Common Runtimes (in order of complexity)

- Constant Time: $\Theta(1)$
- Logarithmic Time: $\Theta(log(n))$
- Linear Time: $\Theta(n)$
- Quadratic Time: $\Theta(n^2)$
- Polynomial Time: $\Theta(n^k)$ for some k > 0
- **Exponential Time:** $\Theta(c^n)$ (for some $c \ge 1$)

Common Runtimes (in order of complexity)

T(n) = cConstant Time: $\Theta(1)$ Logarithmic Time: $\Theta(\log(n))$ $T(n) = c \log(n)$ Linear Time: $\Theta(n)$ $T(n) = c_1 n + c_0$ $T(n) = c_2 n^2 + c_1 n^1 + c_0$ Quadratic Time: $\Theta(n^2)$ Polynomial Time: $\Theta(n^k)$ for some k > 0 $T(n) = c_{\mu}n^{k} + ... + c_{1}n + c_{0}$ **Exponential Time:** $\Theta(c^n)$ (for some $c \ge 1$) $T(n) = c^n$

Constants vs Asymptotics

Given the following pseudocode:

for (i \leftarrow 0 until n) { /* do work */ }

If the **/*** do work ***/** portion of the code originally takes 10 steps...

But we optimize it to now take 7 steps...

Our total runtime goes from 10n steps to 7n steps: 30% faster!

...but still **O(n)**

c and n₀

Compare the two runtimes:

 $T_1(n) = 100n$ $T_2(n) = n^2$

- $100n = O(n^2) (T_2 \text{ is the slower runtime})$
- ...but $c_{hig} = 1$, $n_0 = 100$
- Until our input size reaches 100 or more, T_2 is the **faster** runtime

Takeaways

Asymptotically slower runtimes can be better in real-world situations.

- An algorithm with runtime T_2 is better on small inputs
- An algorithm with runtime T_2 might be easier to implement/maintain
- An algorithm with runtime T_1 might not exists

Takeaways

Asymptotically slower runtimes can be better in real-world situations.

- An algorithm with runtime T_2 is better on small inputs
- An algorithm with runtime T_2 might be easier to implement/maintain
- An algorithm with runtime T_1 might not exists

(sometimes this is provable...see CSE 331)

The important thing is learning the tools to *reason* about the different algorithms and *why* you might choose one over the other!

Takeaways

The important thing is learning the tools to *reason* about the different algorithms and *why* you might choose one over the other!

...But for this class, we can assume that if $T_2(n)$ is in a bigger complexity class, then $T_1(n)$ is better/faster/stronger.

Now some examples... ...and common pitfalls

```
bubblesort(seq: Seq[Int]):
1. n \leftarrow seq length
2. for i \leftarrow n-2 to 0, by -1:
3. for j \leftarrow i to n-1:
4. if seq(j+1) < seq(j):
5. swap seq(j) and seq(j+1)
```

What is the runtime complexity class for bubblesort?

Helpful Summation Rules

1.
$$\sum_{i=j}^{k} c = (k - j + 1)c$$

2. $\sum_{i=j}^{k} (cf(i)) = c \sum_{i=j}^{k} f(i)$
3. $\sum_{i=j}^{k} (f(i) + g(i)) = (\sum_{i=j}^{k} f(i)) + (\sum_{i=j}^{k} g(i))$
4. $\sum_{i=j}^{k} (f(i)) = (\sum_{i=\ell}^{k} (f(i))) - (\sum_{i=\ell}^{j-1} (f(i)))$ (for any $\ell < j$)
5. $\sum_{i=j}^{k} f(i) = f(j) + f(j + 1) + \dots + f(k - 1) + f(k)$
6. $\sum_{i=j}^{k} f(i) = f(j) + \dots + f(\ell - 1) + (\sum_{i=\ell}^{k} f(i))$ (for any $j < \ell \le k$)
7. $\sum_{i=j}^{k} f(i) = (\sum_{i=j}^{\ell} f(i)) + f(\ell + 1) + \dots + f(k)$ (for any $j \le \ell < k$)
8. $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$
9. $\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$
10. $n! \le c_{s}n^{n}$ is a tight upper bound (Sterling: Some constant c_{s} exists)

```
bubblesort(seq: Seq[Int]):
1. n \leftarrow seq length
2. for i \leftarrow n-2 to 0, by -1:
3. for j \leftarrow i to n-1:
4. if seq(j+1) < seq(j):
5. swap seq(j) and seq(j+1)
```

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

<pre>bubblesort(seq: Seq[Int]):</pre>			
1. r	$h \leftarrow seq length$		
2. f	for i \leftarrow n-2 to 0, by -1:		
3.	for j ← i to n-1:		
4.	if seq(j+1) < seq(j):		
5.	<pre>swap seq(j) and seq(j+1)</pre>		

Lines 4-5 are executed exactly n-1 times, but we can treat this as O(n) steps for the inner loop...or can we...?

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

<pre>bubblesort(seq: Seq[Int]):</pre>			
1 . n	\leftarrow seq length	L	
2. fo	or i \leftarrow n-2 to 0, by -1:	k i	
3.	for $j \leftarrow i$ to n-1:		
4.	<pre>if seq(j+1) < seq(j):</pre>		
5.	<pre>swap seq(j) and seq(j+1)</pre>		

Lines 4-5 are executed exactly n-1 times, but we can treat this as O(n) steps for the inner loop...or can we...?

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta(n^2)$?

<pre>bubblesort(seq: Seq[Int]):</pre>				
1. n	← seq length			
2. fo	or $i \leftarrow n-2$ to 0, by -1:			
3.	for $j \leftarrow i$ to n-1:			
4.	if seq(j+1) < seq(j):	What is the complexity of this step?		
5.	<pre>swap seq(j) and seq(j+1)</pre>			

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta(n^2)$?

<pre>bubblesort(seq: Seq[Int]):</pre>				
1. n	\leftarrow seq length			
2. for $i \leftarrow n-2$ to 0, by -1:				
3.	for $j \leftarrow i$ to n-1:			
4.	if seq(j+1) < seq(j):	What is the complexity of this step?		
5.	<pre>swap seq(j) and seq(j+1)</pre>	Do not assume function calls take O(1) time!		

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta(n^2)$?

Bubble Sort on Mutable Data

```
def sort(seq: mutable.Seq[Int]): Unit = {
    val n = seq.length
    for(i <- n - 2 to 0 by -1; j <- i to n) {
        if(seq(n) < seq(j)) {
            val temp = seq(j+1)
               seq(j+1) = seq(j)
                    seq(j) = temp
            }
    }
</pre>
```

Bubble Sort on Immutable Data

```
def sort(seq: Seq[Int]): Seq[Int] = {
    val newSeq = seq.toArray
    val n = seq.length
    for (i <- n - 2 to 0 by -1; j <- i to n) {
        if(newSeq(n) < newSeq(j)) {</pre>
            val temp = newSeq(j+1)
            newSeq(j+1) = newSeq(j)
            newSeq(j) = temp
        }
    return newSeq.toList
```

```
def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
    for(i <- from until seq.length) {
        if(seq(i).equals(value)) { return i }
    }
    return -1
}</pre>
```

What is the complexity?

```
def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
    for(i <- from until seq.length) {
        if(seq(i).equals(value)) { return i }
    }
    return -1
}</pre>
```

What is the complexity? O(n)

```
def count[T](seq: Seq[T], value: T): Int ={
   var count = 0;
   var i = indexOf(seq, value, 0)
   while(i != -1) {
      count += 1;
      i = indexOf(seq, value, i+1)
   }
   return count
```

What is the complexity?

```
def count[T](seq: Seq[T], value: T): Int ={
   var count = 0;
   var i = indexOf(seq, value, 0)
   while(i != -1) {
      count += 1;
      i = indexOf(seq, value, i+1)
   }
   return count
```

What is the complexity? O(n)?

```
def count[T](seq: Seq[T], value: T): Int ={
   var count = 0;
   var i = indexOf(seq, value, 0)
   while(i != -1) {
      count += 1;
      i = indexOf(seq, value, i+1)
   }
   return count
```

What is the complexity? O(n)? What about this line?

```
def count[T](seq: Seq[T], value: T): Int ={
   var count = 0;
   var i = indexOf(seq, value, 0)
   while(i != -1) {
      count += 1;
        i = indexOf(seq, value, i+1)
   }
   return count
```

What is the complexity? O(n)? What about this line? How many while iterations?

```
def count[T](seq: Seq[T], value: T): Int ={
   var count = 0;
   var i = indexOf(seq, value, 0)
   while(i != -1) {
      count += 1;
      i = indexOf(seq, value, i+1)
   }
   return count
```

What is the complexity? Each element is only checked once, so O(n).

Searching Sorted Sequences

- Assuming O(1) access to elements ('random access')
 - Divide the set of elements in half by taking the "middle" element, *m*
 - If *m* is greater than what we are looking for, search the lower half
 - If *m* is less than what we are looking for, search the right half
 - Repeat until you've found the element or you can't divide in half

Searching Sorted Sequences

- Assuming O(1) access to elements ('random access')
 - Divide the set of elements in half by taking the "middle" element, *m*
 - If *m* is greater than what we are looking for, search the lower half
 - If *m* is less than what we are looking for, search the right half
 - Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half?

Searching Sorted Sequences

- Assuming O(1) access to elements ('random access')
 - Divide the set of elements in half by taking the "middle" element, *m*
 - If *m* is greater than what we are looking for, search the lower half
 - If *m* is less than what we are looking for, search the right half
 - Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half? log(n)