
SQL
Database Systems: The Complete Book

Ch 2.3, 6.1-6.4

1

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Statistics???

Hope and Duct Tape?

JSqlParser.sql

???

2

SQL is Human Readable
• Lots of Syntactic Sugar

• WHERE vs HAVING

• Lots of Corner Cases

• SELECT A, B vs SELECT A, SUM(B)

• Non-obvious evaluation strategy

• SELECT … FROM R, S, T, … WHERE …

3
SQL is hard to evaluate directly!

Relational Algebra

• Equivalent to SQL (to be discussed)

• SIMPLE! (only a handful of operators)

• “Non-declarative” (easy to rewrite)

• Minimal corner cases or syntactic sugar

4

“RA” is easier to interpret!

Relational Algebra
• Basic Relational Operators

• Select (), Project (π), Cross/Join (⨉/⋈),
Union (U), Relation (R, S, T, …), Minus (-)

• Extended Relational Operators (more next week)

• Aggregates (SUM,COUNT,MIN/MAX,AVERAGE)

• List Operators: Sort, Limit

5

σ

π
𝜎
⋈

Employee Department

The Evaluation Pipeline

Parsed Query

Data

Results

.sql How does this work?
(later today)

What does this look like?
(today)

How does this work?
(next class)

6

SQL
• Developed by IBM (for System R) in the 1970s.

• Standard used by many vendors.

• SQL-86 (original standard)

• SQL-89 (minor revisions; integrity constraints)

• SQL-92 (major revision; basis for modern SQL)

• SQL-99 (XML, window queries, generated default values)

• SQL 2003 (major revisions to XML support)

• SQL 2008 (minor extensions)

• SQL 2011 (minor extensions; temporal databases)

7

A Basic SQL Query

SELECT [DISTINCT] target-list

FROM relation-list

WHERE condition

A list of relation names
(possibly with a range-variable after each name)

A list of attributes of relations in relation-list

Comparisons (‘=’, ‘<>’, ‘<‘, ‘>’, ‘<=’, ‘>=’) and other boolean predicates,
combined using AND, OR, and NOT

(a boolean formula)

(optional) keyword indicating that the answer should not contain duplicates

8

A Basic SQL Query

SELECT [DISTINCT] target-list

FROM relation-list

WHERE condition

net.sf.jsqlparser.statement.select.PlainSelect

mySelect.getDistinct()

mySelect.getFromItem() and mySelect.getJoins()

mySelect.getSelectItems()

mySelect.getWhere()

9

Query Evaluation
SELECT [DISTINCT] target-list
FROM relation-list
WHERE condition

1) Compute the 2n combinations of tuples in all
relations appearing in relation-list
2) Discard tuples that fail the condition
3) Delete attributes not in target-list
4) If DISTINCT is specified, eliminate duplicate rows

This is the least efficient strategy to compute a query!
A good optimizer will find more efficient strategies to compute the same answer.

10

DISTINCT

11

Why do you explicitly indicate that you
want duplicate elimination in SQL?

Example-Wildcards

12

 FirstName, LastName, Ship
[James, Kirk, 1701A]
[Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A]
 . . .

SELECT *
FROM Officers
WHERE Ship = ‘1701A’

Find all officers on the
Enterprise (Ship 1701A)

 FirstName, LastName, Ship
[James, Kirk, 1701A]
[Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A]
 . . .

‘*’ denotes all attributes
‘Officers.*’ denotes all
 attributes in Officers

net.sf.jsqlparser.statement.select.AllColumns
net.sf.jsqlparser.statement.select.AllTableColumns

Example-Condition

13

 FirstName, LastName, Ship
[James, Kirk, 1701A]
[Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A]
[Montgomery, Scott, 1701A]
[Hikaru, Sulu, 2000]
[Pavel, Chekov, 1701A]
[Nyota, Uhura, 1701A]
[Christine, Chapel, 0001]

SELECT *
FROM Officers
WHERE Ship = ‘1701A’

Find all officers on the
Enterprise (Ship 1701A)

 FirstName, LastName, Ship
[James, Kirk, 1701A]
[Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A]
[Montgomery, Scott, 1701A]
[Pavel, Chekov, 1701A]
[Nyota, Uhura, 1701A]

Example-Target List

14

 FirstName, LastName, Ship
[James, Kirk, 1701A]
[Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A]
[Montgomery, Scott, 1701A]
[Hikaru, Sulu, 2000]
[Pavel, Chekov, 1701A]
[Nyota, Uhura, 1701A]
[Christine, Chapel, 0001]

SELECT O.FirstName,O.LastName
FROM Officers O
WHERE O.Ship = ‘1701A’

Find just names of all
officers on the Enterprise

 FirstName, LastName
[James, Kirk]
[Leonard, McCoy]
[Spock, SonOfSarek]
[Montgomery, Scott]
[Pavel, Chekov]
[Nyota, Uhura]

Example-Multiple Relations

15

 FirstName, LastName, Ship
[James, Kirk, 1701A]
[Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A]
[Montgomery, Scott, 1701A]
[Hikaru, Sulu, 2000]
[Pavel, Chekov, 1701A]
[Nyota, Uhura, 1701A]
[Christine, Chapel, 0001]

 FirstName, LastName
[Hikaru, Sulu] ID, Name, Location

[1701A, Enterprise-A, Andoria]
[2000, Excelsior, Vulcan]
[1864, Reliant, Ceti Alpha VI]

SELECT FirstName,LastName
FROM Officers, Ships
WHERE Ship = ID
 AND Location = ‘Vulcan’

In English, what does this
query compute?

Who is on a ship
located at Vulcan?

Example-Multiple Relations

16

SELECT FirstName,LastName FROM Officers, Ships
WHERE Ship = ID AND Location = ‘Vulcan’

mySelect.getFromItem() returns
 ….schema.Table(Officers)

mySelect.getJoins() returns
 List(
 ….select.Join(Table(Ships), {simple})
)

Range Variables

17

SELECT FirstName,LastName
FROM Officers, Ships
WHERE Ship = ID
 AND Location = ‘Vulcan’

is the same as
SELECT Officers.FirstName,Officers.LastName
FROM Officers, Ships
WHERE Officers.Ship = Ships.ID
 AND Ships.Location = ‘Vulcan’

is the same as
SELECT O.FirstName,O.LastName
FROM Officers O, Ships S
WHERE O.Ship = S.ID
 AND S.Location = ‘Vulcan’

But it’s good style to use
range variables and fully-
qualified attribute names!

JSqlParser calls
this an “alias”

Expressions

18

SELECT O.age,
 age1 = O.age*0.2,
 O.age*3.0 AS age2
FROM Officers O

[age, age1, age2]

Arithmetic expressions can appear in targets or conditions.
Use ‘=’ or ‘AS’ to assign names to these attributes.
(The behavior of unnamed attributes is unspecified)

Strings

19

[Pavel, Chekov]
[Christine, Chapel]

SELECT O.FirstName, O.LastName
FROM Officers O
WHERE S.LastName LIKE ‘Ch%e%’

SQL uses single quotes for ‘string literals’

Strings

20

[Pavel, Chekov]
[Christine, Chapel]

SELECT O.FirstName, O.LastName
FROM Officers O
WHERE O.LastName LIKE ‘Ch%e%’

LIKE is used for String Matches
‘%’ matches 0 or more characters

(like RegEx /.*/)

Strings

21

[Pavel, Chekov]
[Christine, Chapel]

SELECT O.FirstName, O.LastName
FROM Officers O
WHERE O.LastName LIKE ‘Ch_%e%’

LIKE is used for String Matches
‘%’ matches 0 or more characters

(like RegEx /.*/)

UNION

22

Computes the union of any two union-compatible sets of tuples
SELECT O.FirstName
FROM Officers O
WHERE O.LastName = ‘Kirk’
 OR O.LastName = ‘Picard’

SELECT O.FirstName FROM Officers O
WHERE O.LastName = ‘Kirk’

UNION

SELECT O.FirstName FROM Officers O
WHERE O.LastName = ‘Picard’

is the same as

UNION

23

SELECT O.FirstName FROM Officers O
WHERE O.LastName = ‘Kirk’
UNION
SELECT O.FirstName FROM Officers O
WHERE O.LastName = ‘Picard’

net.sf.jsqlparser.statement.select.Union

myUnion.getPlainSelects()

Nested Queries

24

SELECT O.FirstName, O.LastName
FROM Officers O
WHERE O.ID IN (SELECT V.Officer
 FROM Visited V
 WHERE V.Planet = ‘Vulcan’)

IN nested query must
have exactly one attribute

Use NOT IN for
all officers who

have never
visited ‘Vulcan’

What does this query compute?

net.sf.jsqlparser.statement.select.SubSelect
net.sf.jsqlparser.expression.operators.relational.InExpression

Nested Queries

25

SELECT O.FirstName, O.LastName
FROM Officers O
WHERE EXISTS (SELECT *
 FROM Visited V
 WHERE V.Planet = ‘Vulcan’
 AND O.ID = V.Officer)

(With Correlation)

EXISTS is true if the nested query returns at least one result

The nested query can refer to attributes from the outer query

net.sf.jsqlparser.expression.operators.relational.ExistsExpression

More Set Operators

26

IN

EXISTS

NOT IN

NOT EXISTS

More Set Operators

27

[op] ANY [op] ALL

SELECT * FROM Officers O
WHERE O.Rank > ALL (SELECT O2.rank
 FROM Officers O2,
 Ships S
 WHERE O2.Ship = S.ID
 AND S.Name = ‘Enterprise’
)

What does this compute?
Which officers outrank every officer on the Enterprise?

net.sf.jsqlparser.expression.AllComparisonExpression

From-Nesting

28

SELECT *
FROM Officers O,
 (SELECT V.Officer
 FROM Visited V
 WHERE V.Planet = ‘Andoria’
) A
WHERE O.ID = A.Officer

Queries are relations!
net.sf.jsqlparser.statement.select.SubSelect

Aggregate Operators

29

SELECT COUNT(*)
FROM Officers O, Ships S
WHERE O.Ship = S.ID
 AND S.Name = ‘Enterprise’

What does this compute?
How many officers are on the Enterprise?

net.sf.jsqlparser.expression.Function

Aggregate Operators

30

COUNT(*)

COUNT(DISTINCT A[, B[, …]])

SUM([DISTINCT] A)

AVG([DISTINCT] A)

MAX(A)

MIN(A) Single Column/Expression

Group Exercise

31

SELECT * FROM Officers O
WHERE O.Rank > ALL (SELECT O2.rank
 FROM Officers O2,
 Ships S
 WHERE O2.Ship = S.ID
 AND S.Name = ‘Enterprise’
)

How could you write this query without ALL?

Aggregate Operators

32

SELECT S.Name, AVG(O.Age)
FROM Officers O, Ships S
WHERE O.Ship = S.ID

This query is illegal!
Why?

Can’t combine Aggregate and Non-Aggregate targets!

GROUP BY S.Name

Grouping allows us to apply aggregates to Groups of tuples.

Group-By Queries

33

SELECT [DISTINCT] target-list
FROM relation-list
WHERE condition
GROUP BY grouping-list
HAVING group-condition

The target-list now contains
(a) grouped attributes

(b) aggregate expressions

Targets of type (a) must be a subset of the grouping-list

(intuitively each answer tuple corresponds to a single group,
and each group must have a single value for each attribute)

Group-By Queries
SELECT [DISTINCT] target-list
FROM relation-list
WHERE condition
GROUP BY grouping-list
HAVING group-condition

The condition is applied before grouping
The having-condition is applied after grouping

34

Group-By Queries
SELECT [DISTINCT] target-list
FROM relation-list
WHERE condition
GROUP BY grouping-list
HAVING group-condition

mySelect.getGroupByColumnReferences()

mySelect.getHaving()

35

Order By/Limit

36

SELECT O.Name, O.Rank
FROM Officers O

How can we compute the Top 5 officers by rank?

ORDER BY O.Rank
LIMIT 5

mySelect.getOrderByElements()

mySelect.getLimit()

Defining Relations in SQL

37

CREATE TABLE Officers
 (FirstName CHAR(20),
 LastName CHAR(20),
 Ship CHAR(5),
 ID INTEGER
)

CREATE TABLE Ships
 (ID CHAR(5),
 Name CHAR(20),
 Location CHAR(40)
)

The schema defines
not only the column

names, but also their
types (domains)

For example a 20-
character string

Modifying Relations

38

DROP TABLE Officers

ALTER TABLE Ships
 ADD COLUMN Commissioned DATE

Destroy the relation ‘Officers’
All schema information AND tuples are deleted

Add a new column (field) to the Ships relation
Every tuple in the current instance is extended with a

‘null’ value in the new field

Adding and Deleting Tuples

39

INSERT INTO Officers (FirstName, LastName, Ship)
 VALUES (‘Benjamin’, ‘Sisko’, ‘74205’)

DELETE FROM Officers O
 WHERE O.Ship = ‘2000’

Insert single tuples using:

Can delete all tuples satisfying some condition (e.g., Ship = 2000)

More powerful data manipulation commands are available in SQL
(We’ll discuss them later in the course)

SQL

40

• SQL is a language for querying relations

• SELECT to access (query) data

• Different features for different access patterns.

• INSERT INTO, DELETE FROM to modify data

• CREATE TABLE, DROP TABLE,
ALTER TABLE to modify relations

• Next time…

• Translating SQL to Relational Algebra (equivalence)

