
Relational Algebra
Equivalencies

Database Systems: The Complete Book
Ch. 16.2-16.3

Implementing: Joins
Solution 1 (Nested-Loop)

For Each (a in A) { For Each (b in B) { emit (a, b); }}

A B
2

Implementing: Joins
Solution 1 (Nested-Loop)

For Each (a in A) { For Each (b in B) { emit (a, b); }}

A B
2

Implementing: Joins
Solution 2 (Block-Nested-Loop)

3

Implementing: Joins
Solution 2 (Block-Nested-Loop)

1) Partition into Blocks

4

Implementing: Joins
Solution 2 (Block-Nested-Loop)

1) Partition into Blocks 2) NLJ on each pair of blocks

4

Implementing: Joins
Solution 3 (Sort-Merge Join)

A B

3

1

5

2
5
4
1

Keep iterating on the set with the lowest value.

6

When you hit two that match, emit, then iterate both

5

Implementing: Joins
Solution 3 (Sort-Merge Join)

A B

3

1

5

2
5
4
1

Keep iterating on the set with the lowest value.

6

When you hit two that match, emit, then iterate both

5

Implementing: Joins
Solution 3 (Sort-Merge Join)

A B

3

1

5

2
5
4
1

Keep iterating on the set with the lowest value.

6

When you hit two that match, emit, then iterate both

5

Implementing: Joins
Solution 3 (Sort-Merge Join)

A B

3

1

5

2
5
4
1

Keep iterating on the set with the lowest value.

6

When you hit two that match, emit, then iterate both

5

Implementing: Joins
Solution 3 (Sort-Merge Join)

A B

3

1

5

2
5
4
1

Keep iterating on the set with the lowest value.

6

When you hit two that match, emit, then iterate both

5

Implementing: Joins
Solution 3 (Sort-Merge Join)

A B

3

1

5

2
5
4
1

Keep iterating on the set with the lowest value.

6
Done!

When you hit two that match, emit, then iterate both

5

Implementing: Joins
Solution 4 (External Hash)

3

1

5

2
5
4
1

6

A B

6

Implementing: Joins
Solution 4 (External Hash)

31 52
541 6

1) Build a hash table on both relations

A B

6

Implementing: Joins
Solution 4 (External Hash)

1) Build a hash table on both relations

2) In-Memory Nested-Loop Join on each hash bucket

(subdivide buckets using a different hash fn if needed)

1 5

A B

6

Implementing: Joins
Solution 5 (Grace/Hybrid Hash)

Keep the hash table in memory

3

1

5

2
5
4
1

6

A B

(Essentially a more efficient nested loop join)7

Implementing: Joins
Solution 5 (Grace/Hybrid Hash)

Keep the hash table in memory

3

1

5

2

5
4
1

6

A B

(Essentially a more efficient nested loop join)7

Implementing: Joins
Solution 5 (Grace/Hybrid Hash)

Keep the hash table in memory

3

1

5

2

A B

1 5
(Essentially a more efficient nested loop join)7

Implementing: Joins
Solution 6 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

8

Implementing: Joins
Solution 6 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

8

Implementing: Joins
Solution 6 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

8

Implementing: Joins
Solution 6 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

8

Implementing: Joins
Solution 6 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

8

Implementing: Joins
Solution 6 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

8

What are the tradeoffs of each algorithm?

9

What properties
do we care about?

How do the
algorithms compare?

Implementing: Joins
Tradeoffs

Nested Loop

Block-Nested Loop

Index-Nested Loop

Sort-Merge

Hash

Grace Hash

Pipelined? Memory
Requirements?

Predicate
Limitation?

1/2

No

1/2

If Data Sorted

No

1/2

1 Table

2 ‘Blocks’

1 Tuple
(+Index)

Max of 1 Page per Bucket
and All Pages in Any Bucket

Hash Table

No

No

Single Comparison

Equality Only

Equality Only

Equality Only
10

Same as reqs. of
Sorting Inputs

.sql

Select CreateTable

Saved
Schema

PLAYERS.dat

(Output)

π
σ
x

R S

Iterator

.sql

Select CreateTable

Saved
Schema

PLAYERS.dat

(Output)

π
σ
x

R S

Iterator

Optimizer

Equivalent Expressions

(No Beard) (Beard)

(Leonard Nimoy) (Zachary Quinto)=
Two different expressions of the “same” character

≠

They look the same, but one is good, one is evil

Query Optimization

If X and Y are equivalent and Y is better…

… then replace all Xs with Ys

Equivalent Expressions

< A >
< 1 >
< 2 >
< 2 >

< A, B >
< 2, 4 >
< 3, 5 >
< 3, 6 >

R S

Equivalent Expressions

< A >
< 1 >
< 2 >
< 2 >

< A, B >
< 2, 4 >
< 3, 5 >
< 3, 6 >

R S

Is ?

Equivalent Expressions

< A >
< 1 >
< 2 >
< 2 >

< A, B >
< 2, 4 >
< 3, 5 >
< 3, 6 >

R S

Is ?

Is ?

Equivalent Expressions

< A >
< 1 >
< 2 >
< 2 >

< A, B >
< 2, 4 >
< 3, 5 >
< 3, 6 >

R S

Is ?

Is ?

Is ?

Equivalent Expressions

< A >
< 1 >
< 2 >
< 2 >

< A, B >
< 2, 4 >
< 3, 5 >
< 3, 6 >

R S

Is ?

Is ?

Is ?
Is ?

Equivalent Expressions

Two expressions are equivalent
if they produce the same output

Equivalent Expressions

Two expressions are equivalent
if they produce the same output

but…

Equivalent Expressions

< A >
< 1 >
< 2 >
< 2 >

< A >
< 1 >
< 2 >

< A >
< 2 >
< 1 >
< 2 >

=? =?

Equivalence under…
- Bag Semantics: The same tuples (order-independent)
- Set Semantics: The same set of tuples (count-independent)
- List Semantics: The same tuples (order matters)

Equivalent Expressions

< A >
< 1 >
< 2 >
< 2 >

< A >
< 1 >
< 2 >

< A >
< 2 >
< 1 >
< 2 >

=? =?

Equivalence under…
- Bag Semantics: The same tuples (order-independent)
- Set Semantics: The same set of tuples (count-independent)
- List Semantics: The same tuples (order matters)

RA Equivalencies
(Decomposable)

(Commutative)

(Idempotent)

(Associative)
(Commutative)

Try It: Show that

Selection

Projection

Cross Product (and Join)

(Decomposable)

Selection and Projection

Selection commutes with Projection
(but only if attribute set a and condition c are compatible)

a must include all columns referenced by c

Show that

Selection and Projection

Selection commutes with Projection
(but only if attribute set a and condition c are compatible)

a must include all columns referenced by c

Show that

When is this rewrite a good idea?

Join

Selection combines with Cross Product
to form a Join as per the definition of Join

(Note: This only helps if we have a join algorithm for conditions like c)

Show that

Join

Selection combines with Cross Product
to form a Join as per the definition of Join

(Note: This only helps if we have a join algorithm for conditions like c)

Show that

When is this rewrite a good idea?

Selection and Cross Product

Selection commutes with Cross Product
(but only if condition c references attributes of R exclusively)

Show that

Selection and Cross Product

Selection commutes with Cross Product
(but only if condition c references attributes of R exclusively)

Show that

When is this rewrite a good idea?

Projection and Cross Product

Projection commutes (distributes) over Cross Product
(where a1 and a2 are the attributes in a from R and S respectively)

Show that

(under what condition)
How can we work around this limitation?

Projection and Cross Product

Projection commutes (distributes) over Cross Product
(where a1 and a2 are the attributes in a from R and S respectively)

Show that

(under what condition)
How can we work around this limitation?

When is this rewrite a good idea?

RA Equivalencies

Union and Intersections are Commutative and
Associative

Selection and Projection both commute
with both Union and Intersection

RA Equivalencies

Union and Intersections are Commutative and
Associative

Selection and Projection both commute
with both Union and Intersection

When is this rewrite a good idea?

Example

SELECT R.A, T.E
 FROM R, S, T
 WHERE R.B = S.B
 AND S.C < 5
 AND S.D = T.D

R S

T

x

x

R S

T

x

x
R S

T

x

x

Example

R S

T

x

x
R S

T

x

x

Example

R S

T

x

x
R S

T

x

x

Example

Example

R S

T

x

x

R S

T

x

x

Example

R S

T

x

x

R S

T

x

x

Example

R S

T

x

x

R S

T

x

x

Example

R S

T

x

R S

T

x

x

Example

R S

T

x

R S

T

x

x

Example

R S

T

x

R S

T

x

x

Example

R S

T

x

R S

T

x

Example

R S

T

x

R S

T

x

Example

R S

T

x

R S

T

x

Example

R S

T

x
R

S

T
x

Example

R S

T

x
R

S

T
x

Example

R S

T

x
R

S

T
x

Example

R

S

T
x

R

S

T

Example

R

S

T
x

R

S

T

Example

R

S

T
x

R

S

T

Final Plan

SELECT R.A, T.E
 FROM R, S, T
 WHERE R.B = S.B
 AND S.C < 5
 AND S.D = T.D

R

S

T

Translate Dumb, Optimize Later

Find Patterns (Select(Cross(R,S))) …
… and Replace (Join(R,S))

RA Equivalencies

R ./ (S ./ T)(R ./ S) ./ T vs

RA Equivalencies

R ./ (S ./ T)(R ./ S) ./ T vs

Which form is better?

