Relational Algebra Equivalencies

Database Systems: The Complete Book Ch. 16.2-16.3

For Each (a in A) { For Each (b in B) { emit (a, b); }}

For Each (a in A) { For Each (b in B) { emit (a, b); }}

Implementing: Joins Solution 2 (Block-Nested-Loop)

Implementing: Joins

Solution 2 (Block-Nested-Loop)

I) Partition into Blocks

Implementing: Joins

Solution 2 (Block-Nested-Loop)

I) Partition into Blocks 2) NLJ on each pair of blocks

Implementing: Joins Solution 4 (External Hash)

Implementing: Joins Solution 4 (External Hash)

I) Build a hash table on both relations

В

Implementing: Joins Solution 4 (External Hash)

I) Build a hash table on both relations

2) In-Memory Nested-Loop Join on each hash bucket

(subdivide buckets using a different hash fn if needed)

B

Implementing: Joins Solution 5 (Grace/Hybrid Hash)

Keep the hash table in memory

В

(Essentially a more efficient nested loop join)

Implementing: Joins Solution 5 (Grace/Hybrid Hash)

Keep the hash table in memory

Α

(Essentially a more efficient nested loop join)

Implementing: Joins Solution 5 (Grace/Hybrid Hash)

Keep the hash table in memory

Α

B

What are the tradeoffs of each algorithm?

What properties do we care about?

How do the algorithms compare?

Implementing: Joins Tradeoffs

Nested LoopI/2I TableNoBlock-Nested LoopNo2 'Blocks'NoIndex-Nested LoopI/2I Tuple (+Index)Single Compare Single Compare Sorting InputsSingle Compare Equality Or HashNoMax of I Page per Bucket and All Pages in Any BucketEquality Or		Pipelined?	<u>Memory</u> <u>Requirements?</u>	<u>Predicate</u> Limitation?	
Block-Nested LoopNo2 'Blocks'NoIndex-Nested LoopI/2I Tuple (+Index)Single CompareSort-MergeIf Data SortedSame as reqs. of Sorting InputsEquality OrHashNoMax of I Page per BucketEquality Or	Nested Loop	1/2	I Table	No	
Index-Nested LoopI/2I Tuple (+Index)Single CompanySort-MergeIf Data SortedSame as reqs. of Sorting InputsEquality OrHashNoMax of I Page per Bucket and All Pages in Any BucketEquality Or	ock-Nested Loop	No	2 'Blocks'	No	
Sort-Merge If Data Sorted Same as reqs. of Sorting Inputs Equality Or Hash No Max of I Page per Bucket and All Pages in Any Bucket Equality Or	dex-Nested Loop	1/2	l Tuple (+Index)	Single Compariso	'n
Hash No Max of I Page per Bucket Equality Or and All Pages in Any Bucket	Sort-Merge	If Data Sorted	d Same as reqs. of Sorting Inputs	Equality Only	
	Hash	No Ma and	x of I Page per Buc All Pages in Any Bu	_{cket} Equality Only	
Grace Hash I/2 Hash Table Equality Or	Grace Hash	1/2	Hash Table	Equality Only	

They look the same, but one is good, one is evil

Two different expressions of the "same" character

Query Optimization

If X and Y are <u>equivalent</u> and Y is <u>better</u>...

... then replace all Xs with Ys

ls R = S ?

Is R = S ? Is $R = \pi_A(S)$?

Is R = S? Is $R = \pi_A(S)$? Is $R = \pi_{A \leftarrow (A-1)}(S)$?

Is R = S? Is $R = \pi_A(S)$? Is $R = \pi_{A \leftarrow (A-1)}(S)$? Is $\pi_{A \leftarrow (A+1)}(R) = \pi_A(S)$?

Two expressions are equivalent if they produce the same output
Equivalent Expressions

Two expressions are equivalent if they produce the same output

but...

Equivalent Expressions

Equivalence under...

- Bag Semantics: The same tuples (order-independent)
- Set Semantics: The same set of tuples (count-independent)
- List Semantics: The same tuples (order matters)

Equivalent Expressions

Equivalence under...

- **Bag Semantics**: The same tuples (order-independent)
- Set Semantics: The same set of tuples (count-independent)
- List Semantics: The same tuples (order matters)

RA Equivalencies

Selection

$$\sigma_{c_1 \wedge c_2}(R) \equiv \sigma_{c_1}(\sigma_{c_2}(R))$$

$$\sigma_{c_1 \vee c_2}(R) \equiv \delta(\sigma_{c_1}(R) \cup \sigma_{c_2}(R))$$

$$\sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_2}(\sigma_{c_1}(R))$$

(Decomposable) (Decomposable) (Commutative)

Projection

$$\pi_a(R) \equiv \pi_a(\pi_{a \cup b}(R)) \qquad (\text{Idempotent})$$

 $\frac{Cross \operatorname{Product} (\operatorname{and Join})}{R \times (S \times T) \equiv (R \times S) \times T}$ (Associative) $(R \times S) \equiv (S \times R)$ (Commutative)

Try It: Show that $R \times (S \times T) \equiv T \times (R \times S)$

Selection and Projection

 $\pi_a(\sigma_c(R)) \equiv \sigma_c(\pi_a(R))$

Selection <u>commutes</u> with Projection (but only if attribute set **a** and condition **c** are *compatible*)

a must include all columns referenced by c

Show that

 $\pi_a(\sigma_c(R)) \equiv \pi_a(\sigma_c(\pi_{a \cup \texttt{cols}(c)}(R)))$

Selection and Projection

 $\pi_a(\sigma_c(R)) \equiv \sigma_c(\pi_a(R))$

Selection <u>commutes</u> with Projection (but only if attribute set **a** and condition **c** are *compatible*)

a must include all columns referenced by c

Show that

$$\pi_a(\sigma_c(R)) \equiv \pi_a(\sigma_c(\pi_{a \cup \texttt{cols}(c)}(R)))$$

When is this rewrite a good idea?

Join

$\sigma_c(R \times S) \equiv R \bowtie_c S$

Selection <u>combines</u> with Cross Product to form a Join as per the definition of Join (Note: This only helps if we have a join algorithm for conditions like **c**)

Show that

 $\sigma_{(R.B=S.B)\wedge(R.A>3)}(R\times S)\equiv\sigma_{(R.A>3)}(R\bowtie_{(R.B=S.B)}S)$

Join

$\sigma_c(R \times S) \equiv R \bowtie_c S$

Selection <u>combines</u> with Cross Product to form a Join as per the definition of Join (Note: This only helps if we have a join algorithm for conditions like **c**)

Show that

 $\sigma_{(R.B=S.B)\wedge(R.A>3)}(R\times S) \equiv \sigma_{(R.A>3)}(R\bowtie_{(R.B=S.B)}S)$

When is this rewrite a good idea?

Selection and Cross Product

 $\sigma_c(R \times S) \equiv (\sigma_c(R) \times S)$

Selection <u>commutes</u> with Cross Product (but only if condition **c** references attributes of R exclusively)

Show that

 $\sigma_{(R.B=S.B)\wedge(R.A>3)}(R\times S) \equiv \sigma_{(R.A>3)}(R) \bowtie_{(R.B=S.B)} S$

Selection and Cross Product

$$\sigma_c(R \times S) \equiv (\sigma_c(R) \times S)$$

Selection <u>commutes</u> with Cross Product (but only if condition **c** references attributes of R exclusively)

Show that

 $\sigma_{(R.B=S.B)\wedge(R.A>3)}(R\times S) \equiv \sigma_{(R.A>3)}(R) \bowtie_{(R.B=S.B)} S$

When is this rewrite a good idea?

Projection and Cross Product

 $\pi_a(R \times S) \equiv (\pi_{a_1}(R)) \times (\pi_{a_2}(S))$

Projection <u>commutes</u> (distributes) over Cross Product (where $\mathbf{a_1}$ and $\mathbf{a_2}$ are the attributes in \mathbf{a} from R and S respectively) <u>Show that</u>

 $\pi_a(R \bowtie_c S) \equiv (\pi_{a_1}(R)) \bowtie_c (\pi_{a_2}(S))$

(under what condition) How can we work around this limitation?

 $\pi_a((\pi_{a_1 \cup (\operatorname{cols}(c) \cap \operatorname{cols}(R)}(R)) \bowtie_c (\pi_{a_2 \cup (\operatorname{cols}(c) \cap \operatorname{cols}(S)}(S)))$

Projection and Cross Product

 $\pi_a(R \times S) \equiv (\pi_{a_1}(R)) \times (\pi_{a_2}(S))$

Projection <u>commutes</u> (distributes) over Cross Product (where $\mathbf{a_1}$ and $\mathbf{a_2}$ are the attributes in \mathbf{a} from R and S respectively) <u>Show that</u>

 $\pi_a(R \bowtie_c S) \equiv (\pi_{a_1}(R)) \bowtie_c (\pi_{a_2}(S))$

(under what condition) How can we work around this limitation?

 $\pi_a((\pi_{a_1 \cup (\operatorname{cols}(c) \cap \operatorname{cols}(R)}(R)) \bowtie_c (\pi_{a_2 \cup (\operatorname{cols}(c) \cap \operatorname{cols}(S)}(S)))$ When is this rewrite a good idea?

RA Equivalencies

Union and Intersections are <u>Commutative</u> and <u>Associative</u>

Selection and Projection both commute with both Union and Intersection

RA Equivalencies

Union and Intersections are <u>Commutative</u> and <u>Associative</u>

Selection and Projection both commute with both Union and Intersection

When is this rewrite a good idea?

Final Plan

SELECT	R.A, 7	С.Е
FROM	R, S,	Т
WHERE	R.B =	S.B
AND	S.C <	5
AND	S.D =	T.D

Translate Dumb, Optimize Later

Find Patterns (Select(Cross(R,S))) ...
... and Replace (Join(R,S))

RA Equivalencies

 $(R \bowtie S) \bowtie T$ vs $R \bowtie (S \bowtie T)$
RA Equivalencies

$(R \bowtie S) \bowtie T$ vs $R \bowtie (S \bowtie T)$

Which form is better?