

SELECT l.partkey
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
ORDER BY l.shipdate DESC
LIMIT 10;

SELECT l.partkey, COUNT(*)
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
GROUP BY l.partkey;

SELECT l.suppkey, COUNT(*)
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
GROUP BY l.suppkey;

Workloads often have repeating patterns:

Give an example query:

CREATE VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

SELECT partkey FROM salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

SELECT suppkey, COUNT(*)
FROM salesSinceLastMonth
GROUP BY suppkey;

SELECT partkey, COUNT(*)
FROM salesSinceLastMonth
GROUP BY partkey;

View Definition

Motivation — Why are Views Useful?

SELECT partkey FROM salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

SELECT partkey FROM
 (
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
) AS salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

Views act as normal relations

Analogous to a function

Complex query patterns can be given an shorthand

Can freely change view logic “in the background” (Change ‘last month’)

Views contain and abstract concepts

But not quite normal relations…

Definition — What is a View / How are they used?

SELECT partkey FROM salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

SELECT partkey FROM
 (
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
) AS salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

Views act as normal relations

Analogous to a function

Complex query patterns can be given an shorthand

Can freely change view logic “in the background” (Change ‘last month’)

Views contain and abstract concepts

But not quite normal relations…

Definition — What is a View / How are they used?

Easy… rows in salesSinceLastMonth go 1-1 with LINEITEM.

Can find the row of line item that matches a given row of salesSinceLastMonth and update it.

UPDATE salesSinceLastMonth
 SET statusCode = ‘q’;
 WHERE orderkey = 22;

Harder…

What happens if order #22 doesn’t exist?

How does the insertion interact with sequences (e.g., Lineitem.lineno)

INSERT INTO salesSinceLastMonth
 (orderkey, partkey, suppkey, …)
VALUES
 (22, 99, 42, …);

CREATE TRIGGER salesSinceLastMonthInsert
INSTEAD OF INSERT ON salesSinceLastMonth
REFERENCING NEW ROW AS newRow
FOR EACH ROW
 IF NOT EXISTS (
 SELECT * FROM ORDERS
 WHERE ORDERS.orderkey = newRow.orderKey)
) THEN
 INSERT INTO ORDERS(orderkey)
 VALUES (orderkey)
 END IF;
 INSERT INTO LINEITEM VALUES newRow;
END FOR;

InsteadOf triggers update rows

View Updates

Views exist because they’re queried frequently…

Precompute (materialize) the view’s contents (like an index)

Why not use them to make computations faster.

What happens when the data behind the view changes?

What happens when the view definition changes?

What happens when we write a query without realizing we have a view?

Challenges:

View Materialization

Views exist because they’re queried frequently…

Precompute (materialize) the view’s contents (like an index)

Why not use them to make computations faster.

What happens when the data behind the view changes?

What happens when the view definition changes?

What happens when we write a query without realizing we have a view?

Challenges:

View Materialization

Q(D) is the result of your query on the database

Let’s say you have a database D and a query Q

Q(D+ΔD) is the new result

Let’s say you make a change ΔD (e.g., Insert Tuple)

Analogy to Sum {34,29,10,15} + {12} (== 88+12)

If we have Q(D), can we get Q(D+ΔD) faster?

Projection

Selection

Union

Cross-Product

Aggregation

Specific query examples

Insert

Delete

Update

Interactions with...

Updates to Materialized Views

CREATE MATERIALIZED VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

SELECT l.partkey
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
ORDER BY l.shipdate DESC
LIMIT 10;

Can we use materialized views without knowing about them?

View: SELECT Lv FROM Rv WHERE Cv

Query: SELECT Lq FROM Rq WHERE Cq

Simplify the query model:

Rv ⊆ Rq (All relations in the view are in the query join)

Cq = Cv ⋀ C’ (The view condition is weaker than the query condition)

Lq ∩ attrs(Rv) ⊆ Lv (The view doesn’t project away attributes needed for the output)

attrs(C’) ∩ attrs(Rv) ⊆ Lv (The view doesn’t project away attributes needed for the condition)

When can we rewrite this query?

SELECT Lq FROM (Rq-Rv), view WHERE C’

The whole thing rewrites to:

View Selection

CREATE MATERIALIZED VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

SELECT l.partkey
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
ORDER BY l.shipdate DESC
LIMIT 10;

Can we use materialized views without knowing about them?

View: SELECT Lv FROM Rv WHERE Cv

Query: SELECT Lq FROM Rq WHERE Cq

Simplify the query model:

Rv ⊆ Rq (All relations in the view are in the query join)

Cq = Cv ⋀ C’ (The view condition is weaker than the query condition)

Lq ∩ attrs(Rv) ⊆ Lv (The view doesn’t project away attributes needed for the output)

attrs(C’) ∩ attrs(Rv) ⊆ Lv (The view doesn’t project away attributes needed for the condition)

When can we rewrite this query?

SELECT Lq FROM (Rq-Rv), view WHERE C’

The whole thing rewrites to:

View Selection

Views for Transactions

Incremental View
Maintenance

Not covered by Database Systems: TCB

1

Materialized Views

2

Q()

When the base data changes, the view needs to be updated

Materialized Views

3

Q()

When the base data changes, the view needs to be updated

View Maintenance

4

VIEW ← Q(D)

View Maintenance

5

WHEN D ← D+ΔD DO:

Re-evaluating the query from scratch is expensive!

VIEW ← Q(D+ΔD)

View Maintenance

6

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

(ideally) Smaller & Faster Query

(ideally) Fast “merge” operation.

Intuition

7

D = {1, 2, 3, 4} ΔD = {5}
Q(D) = SUM(D)

Q(D+ΔD) ~ O(|D|+|ΔD|)
VIEW + SUM(ΔD) ~ O(|ΔD|)

Intuition

8

R = {1, 2, 3}, S ={5,6} ΔR = {4}

Q(R,S) = COUNT(R x S)

Q(R+ΔR,S) ~ O((|R|+|ΔR|) * |S|)

VIEW + COUNT(|ΔR|*|S|) ~ O(|ΔR|*|S|)

Intuition

9

+ ~ U

* ~ x

Are these kinds of patterns common?

Rings/Semirings

10

This kind of pattern occurs frequently.
Semiring : < S, +, x, S0, S1 >

Any set of ‘things’ S such that…

Si + Sj = Sk

Si x Sj = Sk

Si x (Sj + Sk) = (Si x Sj) + (Sj x Sk)

Si + S0 = Si

Si x S1 = SiClosed

Distributive

Additive &
Multiplicative

“zeroes”Si x S0 = S0

Rings/Semirings

11

Ring : < S, +, x, S0, S1, - >

Any semiring where every element
has an additive inverse…

Si + (-Si) = S0

12

THE TANGENT ENDS NOW

Incremental View
Maintenance

13

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

What does ΔR represent?
How to interpret R + ΔR?

Basic Challenges of IVM

How to compute ΔQ?

What is ΔR?

14

What does it need to represent?

Insertions

Deletions

Updates
(Delete Old Record & Insert Updated Record)

What is ΔR?

15

A Set/Bag of Insertions

A Set/Bag of Deletions

What is +?

16

A Set/Bag of Insertions

A Set/Bag of Deletions
A Set/Bag

R ΔR+

+

R ⋃ ΔRinserted
 - ΔRdeleted

But this breaks closure of ‘+’!

Incremental View
Maintenance

18

VIEW ← VIEW+ΔQ(D,ΔD)

Construct ΔQ(R,ΔR,S,ΔS,…)
Given Q(R,S,…)

Delta Queries

19

R

σ

R ΔR

σ

Original R Inserted
Tuples of R

Does this work for deleted tuples?

Delta Queries

20

R

π

R ΔR

π

Does this work (completely) under set semantics?

Delta Queries

21

R1 R1 ΔR1R2

U

R2 ΔR2

Delta Queries

22

R R ΔRS

x

S

Delta Queries

23

R : { 1, 2, 3 } S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }

(R+ΔR) x S = { <1,5>, <1, 6>, <4,5>, <4,6> }

Δinserted(R x S) = ΔRinserted x S
Δdeleted(R x S) = ΔRdeleted x S

What if R and S both change?

Delta Queries

24

Computing a Delta Query

Delta Queries

25

The original
query The delta query

26

How about an example…

Delta Queries

27

CUSTOMER ORDERS

LINEITEM

Let’s say you have an insertion into LINEITEM

Delta Queries

28

CUSTOMER ORDERS

LINEITEM

Delta Queries

29

CUSTOMER ORDERS

LINEITEM

= ø

Delta Queries

30

CUSTOMER ORDERS

LINEITEM

Delta Queries

31

CUSTOMER ORDERS

LINEITEM

Delta Queries

32

SELECT *
FROM CUSTOMER C, ORDERS O, DELTA_LINEITEM DL
WHERE C.custkey = O.custkey
 AND DL.orderkey = O.orderkey
 AND C.mktsegment = …
 AND O.orderdate = …
 AND DL.shipdate = …

Multisets

33

{ 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5 }
(not compact)

{ 1 → x3, 2 → x5, 3 → x2, 4 → x6, 5 → x1 }
Multiset representation: Tuple → # of occurrences

multiplicity

Multiset Deltas

34

Insertions = Positive Multiplicity

Deletions = Negative Multiplicity

+ = Bag/Multiset Union

Multiset Deltas

35

What does Union do?
{ A→1, B→3 } ⋃ { B→2, C→4 } = { A→1, B→5, C→4 }

{ A→1 } ⋃ { A→-1 } = { A→0 } = { }

Multiset Deltas

36

What does Union do?
{ A→1, B→3 } ⋃ { B→2, C→4 } = { A→1, B→5, C→4 }

{ A→1 } ⋃ { A→-1 } = { A→0 } = { }

What does Cross Product do?

{ A→1, B→3 } x { C→4 } = { <A,C>→?, <B,C>→? }

Multiset Deltas

37

What does Union do?
{ A→1, B→3 } ⋃ { B→2, C→4 } = { A→1, B→5, C→4 }

{ A→1 } ⋃ { A→-1 } = { A→0 } = { }

What does Cross Product do?

{ A→1, B→3 } x { C→4 } = { <A,C>→4, <B,C>→? }

Multiset Deltas

38

What does Union do?
{ A→1, B→3 } ⋃ { B→2, C→4 } = { A→1, B→5, C→4 }

{ A→1 } ⋃ { A→-1 } = { A→0 } = { }

What does Cross Product do?

{ A→1, B→3 } x { C→4 } = { <A,C>→4, <B,C>→12 }

Multiset Deltas

39

What does projection do?

πAttr1{ <A,X>→1, <A,Y>→2, <B,Z>→5 }

= { <A>→1, <A>→2, →5 }

= { <A>→3, →5 }

This effect seems… familiar

40

If you find this subject interesting… let’s chat.

http://www.dbtoaster.org

http://www.dbtoaster.org

