
Load/Parse data records

Filter records (rank ≠ Ensign, age > 25)

Print names

Workflow Recap:

Today: Let’s combine steps 1 & 2

Indexing

Can use Binary Search over data to find first record > 25

Return that record and everything following it

Algorithm:

Fixed-Size Records

Put a fixed number of records on each “page”

Need a record format with predictable record locations

Paging makes binary search pricy

What happens if the data changes?

Challenges

age > X; Same as above

age < Y; Yes, Start from first record, return everything until first record >= X

age = X: Yes, Binary Search Still Works (may still need to return multiple records)

X < age < Y; Yes, Binary Search, then return everything until first record >= Y

Does this generalize?

Root Idea: Sort records by age

Basics: Sorting

Scan is still comparatively cheap

Paging (respectively cache lines) makes binary search expensive

Modulo a few corner cases, we can’t sort more than once

No real answer for this point today… we’ll get back to it

What if we need to access 2 (or more) attributes?

Challenges

Fit as many [key+pointer] pairs as you can in one page

Each pointer points to the first record equal to or greater than the listed key

Binary search on keys to find the pointer to follow

Implementation 1: One page of summaries

Idea 1: Page-aware ‘Key’ Summaries

Indexes



Limitation: Doesn’t scale to larger data sizes; Still may need to binary search across data on multiple pages)

Binary search within a page is cheap, so keep one [key+pointer] per page

Pack as many [key+pointer]s into a summary page as you can.

Tier 1: Data Pages

Tier 2: Pages of [Key+Pointer]s to the first key on each data page

Tier 3: Pages of [Key+Pointer]s to the first key on each tier 2 page

Tier 4: etc…

If you overflow the summary page, start building a summary of summaries

Implementation 2: Add indirection (Tree Indexes)

Can’t insert into the middle of a sorted file

Can’t insert into a packed (sorted) summary page

Challenge: Handling Changing Data

Bonus: Don’t need fixed-size records

Treat pages as atomic blobs of storage (rather than a single contiguous region)

Leave empty space on each data page and each summary (tree) page

Shift records to/from other pages at the same level (pivot)

Merge two pages together

Create a new level / flatten a level

What to do when a page “fills up” or “empties out”?

Super-tall structure

Degenerate case:

Implementation 3: Out-of-order pages (B+Tree-Ish Indexes)

Invariant 1: Uniform Tree Depth

Invariant 2: 50% ≤ fill ≤ 100% (for all except root page)

Recur higher if necessary

When page drops below 50% fill, merge with adjacent page

Recur higher if necessary

When page exceeds 100% fill, split into 2 pages

When root drops to 1 pointer, reduce depth by 1

When root exceeds capacity, increase depth by 1

Optimization: Borrow/Loan records/[key+pointer]s from/to adjacent pages

Implementation 4: As above, but maintain size invariant (B+Tree)


