
You have some large number (e.g., 3072) pages of data to sort

You only have a small number (e.g., 3) pages to do it

How do you do this?

Problem

Load 3 pages of data

Sort everything

Flush out this new sorted run of size 3 to disk

Repeat until all data touched once

Phase 1:

Requires 2 pages from the 2 sorted runs

Requires 1 output page

As soon as an input page is empty, read in the next

As soon as an output page is full, flush it to disk

Pick 2 sorted runs of size 3 and merge them together

Repeat until all sorted runs of size 3 are merged into sorted
runs of size 6

Phase 2

As phase 2, but keep multiplying the sorted run size by 2

Phases 3 to 11 (or, in general, until done)

Phase 1: 3072 x 2 IOs (one read/write per page of data)

Phase 2-11: 3072 x 2 IOs (one read/write per page of data)

Phase 1 creates runs of size 3

In general:

Cost Analysis:

Idea 1: Sort/Merge

2-Way Sort

Phase 2 creates runs of size 3•2^{phase-1}

One sorted run of the full length of the data

2^{phase-1} >= #pages/3

phase-1 >= log_2(#pages/3)

phases >= 1+log_2(#pages/3)

Equivalently:

Last phase is when 3•2^{phase-1} >= #pages

ceil(1 + log_2(#pages/3)) phases required

Total: #pages * 2 * (1+log_2(#pages / N)) IOs

What if we have more than 3 pages (say we have N pages)?

Load N pages of data instead

Phase 1:

Simultaneously merge N-1 sorted runs

(optionally use some of the space to buffer reads/writes)

Phases 2 and onwards:

Base cost per phase is still #pages x 2 IOs each

Now, last phase is at N•(N-1)^{phase-1} > #pages

So: ceil(1 + log_{N-1}(#pages / N)) phases required

Cost Analysis

Idea 2: N-Way Sort/Merge

Obviously, I wouldn't ask if the answer was no.

Using only N memory, can we create sorted runs longer than N?

Load N pages of data, sort in-memory

Flush the first page out to disk

Now you have a free page!

Idea: Flush data out a little at a time

Idea 3: Longer Initial Sorted Runs

Read in another page of unsorted data

Sort the result in memory

Repeat?

Keep track of the highest value flushed out to disk in the
current sorted run.

Don't flush out records below this value

Instead, set them aside for the next sorted run

Eventually you won't be able to flush any new records out... at
this point, you end the current sorted run and start the next one

Problem: What if you get a lower value than something you
already flushed out?

On average, you have a 50% chance of getting a record lower
than your highest flushed value

Initial sorted runs will be ~2x as long, saving you 2/N phases

Cost Analysis:

What happens if the input is *already* sorted?

... or mostly sorted?

Bonus

Data is Big - Users often want summary statistics

How do we compute these summary statistics efficiently?

Overview

A Default Value (e.g., 0)

A Merge Current Value and Record Value operation (e.g.,
current + record)

An "iterator-style" operation with 2 parts

Fold

Aggregation

Default: 0

Merge: current + 1

COUNT

Default: 0

Merge: current + record

SUM

Default: -infinity

Merge: Max(current, record)

MAX (resp, MIN)

Actually a combination of COUNT and SUM:

SUM(X) / COUNT(*)

Default: < count: 0, sum: 0 >

Merge: < current.count + 1, current.sum + record >

Can express as a fold over a tuple of values:

Finalize: current.sum / current.count

Need a "finalize" step:

AVERAGE

Default: Ø

Merge: current ⨄ record

Finalize: Find the median

Median is a "holistic" aggregate

"Algebraic" aggregates have a constant-size intermediate
result

Holistic aggregates need all of the data (e.g., in sorted order)

What gives?

MEDIAN

Creates one row for each A, with a sum of all of the B values
from rows with that A.

SELECT A, SUM(B) FROM R

How do we implement this?

What if you want multiple aggregate values?

Scan records in any order

If not, create a new entry in the hash table with the default
group value

For each record, check to see if the hash table contains the
group by attribute(s) value(s)

Incorporate the new record's aggregate value

Idea 1: In-Memory Hash Table

Problem w/ Idea 1: What if you run out of memory

Use the external sort algorithm above by the group-by
attributes

If you iterate over the sorted list of elements, as soon as the
group by attributes change, you know you're done with that
group

... so you only ever need to keep one "current value" in memory
at a time

Benefit: you know that all elements of a single group will be
adjacent to one another:

Pro: You can start emitting intermediate results before you're
done with everything

Con: Log(N) full passes over the data

Idea 2: Pre-Sort the Data

Idea 3: Pre-Hash the Data

Group-By Aggregation

Do one pass through the data to create hash buckets that will fit
in memory

... unless you guess wrong about the number of buckets to
create

Like sorting, but you only need one pass through the data

