
Example!

Merging Sorted Lists

Creates one row for each A, with a sum of all of the B values from rows with that A.

SELECT A, SUM(B) FROM R

How do we implement this?

What if you want multiple aggregate values?

Scan records in any order

If not, create a new entry in the hash table with the default group value

For each record, check to see if the hash table contains the group by attribute(s) value(s)

Incorporate the new record's aggregate value

Idea 1: In-Memory Hash Table

Problem w/ Idea 1: What if you run out of memory

Use the external sort algorithm above by the group-by attributes

If you iterate over the sorted list of elements, as soon as the group by attributes change, you know you're done with that group

... so you only ever need to keep one "current value" in memory at a time

Benefit: you know that all elements of a single group will be adjacent to one another:

Pro: You can start emitting intermediate results before you're done with everything

Con: Log(N) full passes over the data

Idea 2: Pre-Sort the Data

Do one pass through the data to create hash buckets that will fit in memory

... unless you guess wrong about the number of buckets to create

Like sorting, but you only need one pass through the data

Idea 3: Pre-Hash the Data

Group-By Aggregation

Merge rows (A U B)

Question: What rows from A go with what rows from B?

Table of Students(student_id, name)

Table of Courses(course_id, title)

Table of SignedUpFor(student_id, course_id)

Data

SELECT title, COUNT(*) FROM Courses NATURAL JOIN SignedUpFor

Count the number of students signed up for each course?

SELECT title, COUNT(*) FROM Courses NATURAL JOIN SignedUpFor NATURAL JOIN Students WHERE name LIKE '% Kirk'

Count the number of people named "Kirk" signed up for each course?

Example

Merge columns

Pair rows from A with rows from B where a specific condition holds (e.g., Courses.course_id = SignedUpFor.course_id)

Join Borrower with itself on "borrower.1id = borrower2.id AND borrower1.date <> borrower2.date"

"List identification numbers of borrowers who took out books on two different days"

WHERE distance(person.loc, restaurant.loc) < 2 miles

"Find all restaurants within 2 miles of each person"

More general conditions are also possible

General Pattern

How do you combine 2 tables?

foreach(tuple1 in left)

Try every pair of tuples against the condition

(Naive) Idea 1: Nested Loop Join

How do you implement this?

Joins and Cross Products

emit(concat(tuple1 + tuple2))

if(condition(tuple1, tuple2))

foreach(tuple2 in right)

O(N^2)

Slow... but guaranteed to work on any condition

Limitation of Idea 1: Inner loop loads ALL of the data in |left| times

Idea: Load in Blocks

emit(concat(tuple1 + tuple2))

if(condition(tuple1, tuple2))

foreach(tuple2 in block2)

foreach(tuple1 in block1)

foreach(block2 in right)

foreach(block1 in left)

Still O(N^2), but with a better constant

Slightly faster... only need to load in |left| / |block| copies

(Slighlty less naive) Idea 2: Block Nested Loop Join

Sort left on A, sort right on B, and then merging is linear

If you have a predicate of the form A = B

emit(concat(tuple1 + tuple2))

if(condition(tuple1, tuple2))

foreach(tuple in merge(condition, sort(left), sort(right))):

Data might already be sorted!

Otherwise, O(N*log(N))

Total cost: Cost of sorting + O(N)

Limitation: Only works if you have an A = B predicate (so you can sort on A, B)

Idea 3: Sort + Merge (Sort-Merge Join)

emit(concat(tuple1 + tuple2))

if(condition(tuple1, tuple2))

foreach(tuple2 in right.index_lookup(condition, tuple1))

foreach(tuple1 in left)

O(N * [cost of one index lookup])

|left| index lookups rather than full table scans

Idea 4: Use an Index (Index-Nested Loop Join)

left_index = {}

left_index.add(tuple1)

foreach(tuple1 in left)

emit(concat(tuple1 + tuple2))

if(condition(tuple1, tuple2))

foreach(tuple1 in left_index.index_lookup(condition, tuple2))

foreach(tuple2 in right)

Works with Tree indexes, Hash indexes

Cost of building index (O(N logN) for tree, O(N) for hash

Cost of scanning, per-record: O(logN) for tree, O(1) for hash

Might need to return multiple records... so really it's O(logN + |records returned|) and O(1+ |records returned|)

Overall Cost: O(N logN) or O(N)

Most efficient algorithm available... but requires enough memory for at least one table to stay in memory

Idea 5: Build an Index... in memory (1-pass index join)

Same as before, but index goes to disk

Solution: Build an index on both inputs

Problem: Random access to disk can be avoided!

For a hash index, make sure you use the same hash fn for both tables.

For a tree index... welll... this basically degenerates to Sort+Merge Join

Cost: O(N) IOs for Hash ... but with a fairly high constant (join adds 2 IOs per input page)

Idea 6: Build an index on disk (2-pass index join)

