
Selection Pushdown

Join Conversion

Join Reordering

Pick a Join Algo

Enumerating all possible plans

Always push down selections

Always convert joins

Which join order???

Which join algo?

Which Plan is the Best?

Idea 2: IO Cost

Idea 1: CPU Cost

What makes a plan the best?

When to Optimize

Number of reads performed by each operator

Number of writes performed by each operator

How do we measure IO Cost?

Assume operators can communicate with each other for free.

The cost of materializing the data IF it needs to be materialized on disk

The cost of reading the data back in IF it needs to be read back in.

Costs only include:

What about communicating between operators?

For some of these estimates, we’ll need to be able to estimate the size of each table (call the # of pages in R: |R|)

Key Columns

Distribution of Values

Basic properties of the data:

What else do we need?

Overview

Number of IOs : |R|

File Scan (R)

Number of IOs : 0 (never need to materialize a selection)

Selection (σ(R))

How big is this? Return to it later.

Number of IOs for a Hash Index : |σ(R)|

Number of IOs for a B+Tree Index with directory pages of size B: |σ(R)| + logB(|R|)

Index Lookup (σ(R) where R is a file scan)

Number of IOs : 0 (never need to materialize a projection)

Projection (π(R))

Number of IOs : 0 (never need to materialize a BAG union — see distinct for set union)

Union

Sort (τ(R)) — External Sort with B pages of memory

IO Costs

IO Cost

Number of IOs : ~2•logB(|R| / 2)

Need to write all of S to disk once: |S| pages

Read B pages of data from source operator R: Free

Join the block with the materialized data in S, one tuple at a time: |S|

Repeat (|R| / B) times…

Number of IOs : |S| + (|R| / B)•(|S|)

Cross-Product (R x S) — BNLJ with B pages of memory for blocking R

Number of IOs: 0 (entirely in-memory)

Join (R ⋈ S) — 1-pass Hash/Tree Join

Write all |R| and |S| to disk, bucketizing: |R| + |S|

Read in each bucket: |R| + |S|

Number of IOs: 2•(|R| + |S|)

Join (R ⋈ S) — 2-pass Hash Join

Number of IOs: 0 + cost of the τ(S) (Merge step is free)

Join (τ(R) ⋈ τ(S)) — Sort/Merge Join

Each inner loop is basically one Index Scan

Number of IOs: |R| • [cost of one index lookup: σ[const] = S.A(S)]

Join (R ⋈R.A = S.A S) — Index Nested Loop Join (assuming index on S)

Number of IOs: 0

Aggregation (ɣ(R)) — In-memory

Write each bucket out, read each bucket in

Number of IOs: 2|R|

Aggregation (ɣ(R)) — On-Disk, Hash-Based

Number of IOs: 0 + cost of τ(R)

Aggregation (ɣ(τ(R)) — On-Disk, Sort-Based

Distinct (δ(R))— Works EXACTLY like Aggregation

π(R), τ(R) : |R|

R U S : |R| + |S|

R x S : |R| * |S|

R ⋈ S : Identical to σ(R x S)…

Most of the operators are straightforward

σ(R)

ɣ(R) & δ(R)

Some are hard

Selectivity = 0.5

Works … mostly well 70% of the time. Very brittle and liable to break things

Be wary: DBMSes actually do this!

Generic (Default) Heuristic:

If R.A is a Key, then precisely 1 tuple passes through… given

Selectivity = 1 / # of distinct values of R.A

Idea: Collect stats: # of distinct values

R.A = [Const]

Selection : Compute Selectivity (or % tuples passed through)

Cardinality (Size) Estimation

Works well… but only for discrete data (Strings, Ints, Dates)

Also gives you “Key” for free

Also works for R.A in [List]

Selectivity = ([Const] - Min) / (Max - Min)

Works for continuous data (Floats)

Idea: Collect stats: Min/Max, and assume a uniform distribution of values

R.A < [Const] (also works for others)

(the Equijoin condition)

Becomes identical to either R.A = const or R.B = const

For each row, you’re testing whether R.B = Some specific, somewhat arbitrary value

Both are an upper bound on the selectivity, so take whichever reduction gives you the lower value

Idea 1: Assume no correlation

R.A = R.B

Assuming no correlation between C1 and C2: Selectivity(C1) • Selectivity(C2)

C1 AND C2

Going more fancy: Histograms (See attached)

