
π(R), τ(R) : |R|

R U S : |R| + |S|

R x S : |R| * |S|

R ⋈ S : Identical to σ(R x S)…

Most of the operators are straightforward

σ(R)

ɣ(R) & δ(R)

Some are hard

Selectivity = 0.5

Works … mostly well 70% of the time. Very brittle and liable to break things

Be wary: DBMSes actually do this!

Generic (Default) Heuristic:

Compute COUNT(*) for every value value of A

Gives exact selectivity

Idea 1:

Min/Max COUNT(*)

Gives lower/upper bound on selectivity

Idea 2

Avg COUNT(*) === Min/Max(A) (for a continuous domain) + Total Count == # distinct values of A + Total Count

Gives selectivity in average case, assuming a uniform distribution

Selectivity = Total Count / # distinct values of A

Idea 3

Can we do better?

R.A = [Const]

Selection : Compute Selectivity (or % tuples passed through)

Cardinality (Size) Estimation

Recap

Selectivity = ([Const] - Min) / (Max - Min)

Works for continuous data (Floats)

Idea: Collect stats: Min/Max, and assume a uniform distribution of values

R.A < [Const] (also works for others)

(the Equijoin condition)

Becomes identical to either R.A = const or R.B = const

For each row, you’re testing whether R.B = Some specific, somewhat arbitrary value

Both R.A and R.B are an upper bound on the selectivity, so take whichever reduction gives you the lower value

Interesting, this magically works for foreign key relationships

Idea 1: Assume no correlation

R.A = R.B

Assuming no correlation between C1 and C2: Selectivity(C1) • Selectivity(C2)

C1 AND C2

Other types of queries

Idea 4: Intermediate… Build a Histogram

More complex ideas…

Selectivity Estimation

Store COUNT(*) for smaller ranges

e.g., For 1 from 1-100, store 10 buckets: 1-10, 11-20, etc…

Equality predicates are exactly the same as before.

If the whole bucket is in the range, the entire count is in the range

If part of the bucket is in the range, make a uniform distribution assumption for the bucket.

Range predicates:

That’s a progressive image.

How could we make a progressive histogram?

Ever seen an image on a webpage load and it’s all blocky at first and then it gets clearer?

Start with a completely uniform distribution

What information do you need in order to go from this to a 2-bucket histogram?

Only need to communicate one integer Difference = (Left.Count - Right.Count)

Left.Count = (Total.Count + Difference) / 2

Right.Count = (Total.Count - Difference) / 2

You have Total.Count = (Left.Count + Right.Count)

Idea 1: Split Bucket Ranges Evenly (e.g., 1-100 becomes 1-50, 51-100)

Guaranteed to have an equal count on either side.

Idea 2: Communicate *Median* value (e.g., { 1, 45, 47, 48, 60, 72, 91, 99 } becomes 1-48, 49-100)

Overview

Idea 5: Wavelets

Store rows together

Row-based layouts

Store attributes together

Values with the same ROWID “join” together

Advertising datasets == 1000s of columns or more

Costly if you only care about 5ish

Key advantage: Can avoid loading multiple columns.

Option 1: Array of VALUE (Index = ROWID)

Key advantage: Can reorder. Effectively a big secondary index.

Often want both ROWID -> VALUE and VALUE -> ROWID

Can Compress w/ Run-length encoding

Option 2: <ROWID, VALUE>

Easier SIMD

ROWID Joins become intersections of bit vectors

Other reasons to use Arrays of values

Updates are expensive

Inserts are prohibitive

Reasons not to use columnar layouts

Columnar-Layouts

Columnar Layouts

