- Recap

- Cardinality (Size) Estimation
 - Most of the operators are straightforward
 - π(R), τ(R) : |R|
 - R U S : |R| + |S|
 - R x S : |R| * |S|
 - $R \bowtie S$: Identical to $\sigma(R \times S)...$
 - Some are hard
 - σ(R)
 - γ(R) & δ(R)
 - ▼ Selection : Compute Selectivity (or % tuples passed through)
 - ▼ Generic (Default) Heuristic:
 - Selectivity = 0.5
 - Works ... mostly well 70% of the time. Very brittle and liable to break things
 - Be wary: DBMSes actually do this!
 - ▼ R.A = [Const]
 - ▼ Idea 1:
 - Compute COUNT(*) for every value value of A
 - Gives exact selectivity
 - Idea 2
 - Min/Max COUNT(*)
 - Gives lower/upper bound on selectivity
 - Idea 3
 - Avg COUNT(*) === Min/Max(A) (for a continuous domain) + Total Count == # distinct values of A + Total Count
 - · Gives selectivity in average case, assuming a uniform distribution
 - Selectivity = Total Count / # distinct values of A
 - Can we do better?

Selectivity Estimation

- Other types of queries
 - R.A < [Const] (also works for others)
 - ▼ Idea: Collect stats: Min/Max, and assume a uniform distribution of values
 - Selectivity = ([Const] Min) / (Max Min)
 - Works for continuous data (Floats)
 - ▼ R.A = R.B
 - (the Equijoin condition)
 - ▼ Idea 1: Assume no correlation
 - Becomes identical to either R.A = const or R.B = const
 - For each row, you're testing whether R.B = Some specific, somewhat arbitrary value
 - Both R.A and R.B are an upper bound on the selectivity, so take whichever reduction gives you the lower value
 - Interesting, this magically works for foreign key relationships
 - C1 AND C2
 - Assuming no correlation between C1 and C2: Selectivity(C1) Selectivity(C2)
- More complex ideas...
 - ▼ Idea 4: Intermediate... Build a Histogram

- Store COUNT(*) for smaller ranges
- e.g., For 1 from 1-100, store 10 buckets: 1-10, 11-20, etc...
- Equality predicates are exactly the same as before.
- Range predicates:
 - If the whole bucket is in the range, the entire count is in the range
 - If part of the bucket is in the range, make a uniform distribution assumption for the bucket.
- Idea 5: Wavelets
 - ▼ Ever seen an image on a webpage load and it's all blocky at first and then it gets clearer?
 - That's a progressive image.
 - · How could we make a progressive histogram?
 - Overview
 - Start with a completely uniform distribution
 - What information do you need in order to go from this to a 2-bucket histogram?
 - ▼ Idea 1: Split Bucket Ranges Evenly (e.g., 1-100 becomes 1-50, 51-100)
 - Only need to communicate one integer Difference = (Left.Count Right.Count)
 - ▼ You have Total.Count = (Left.Count + Right.Count)
 - Left.Count = (Total.Count + Difference) / 2
 - Right.Count = (Total.Count Difference) / 2
 - ▼ Idea 2: Communicate *Median* value (e.g., { 1, 45, 47, 48, 60, 72, 91, 99 } becomes 1-48, 49-100)
 - · Guaranteed to have an equal count on either side.

Columnar Layouts

- Row-based layouts
 - Store rows together
- Columnar-Layouts
 - Store attributes together
 - Option 1: Array of VALUE (Index = ROWID)
 - Values with the same ROWID "join" together
 - ▼ Key advantage: Can avoid loading multiple columns.
 - Advertising datasets == 1000s of columns or more
 - Costly if you only care about 5ish
 - ▼ Option 2: <ROWID, VALUE>
 - Key advantage: Can reorder. Effectively a big secondary index.
 - Often want both ROWID -> VALUE and VALUE -> ROWID
 - Can Compress w/ Run-length encoding
 - Other reasons to use Arrays of values
 - Easier SIMD
 - · ROWID Joins become intersections of bit vectors
 - Reasons not to use columnar layouts
 - Updates are expensive
 - · Inserts are prohibitive