
Views
April 6

1

2

SELECT l.partkey
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
ORDER BY l.shipdate DESC
LIMIT 10;

2

SELECT l.partkey
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
ORDER BY l.shipdate DESC
LIMIT 10;

SELECT l.partkey, COUNT(*)
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
GROUP BY l.partkey;

SELECT l.suppkey, COUNT(*)
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
GROUP BY l.suppkey;

2

SELECT l.partkey
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
ORDER BY l.shipdate DESC
LIMIT 10;

SELECT l.partkey, COUNT(*)
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
GROUP BY l.partkey;

SELECT l.suppkey, COUNT(*)
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
GROUP BY l.suppkey;

“orders since last month”

3

CREATE VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

3

CREATE VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

SELECT partkey FROM salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

3

CREATE VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

SELECT partkey FROM salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

SELECT suppkey, COUNT(*)
FROM salesSinceLastMonth
GROUP BY suppkey;

3

CREATE VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

SELECT partkey FROM salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

SELECT suppkey, COUNT(*)
FROM salesSinceLastMonth
GROUP BY suppkey;

SELECT partkey, COUNT(*)
FROM salesSinceLastMonth
GROUP BY partkey;

4

SELECT partkey FROM ordersSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

CREATE VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

4

SELECT partkey FROM ordersSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

SELECT partkey FROM
 (
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
) AS salesSinceLastMonth
ORDER BY shipdate DESC LIMIT 10;

CREATE VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

Views
• … contain and abstract complex concepts.

• Complex query patterns can be given a shorthand.

• It’s easier to change view logic “in the background”

• … act as normal relations.

• View references can be expanded inline into nested
subqueries.

• Updates are trickier….

5

View Updates

6

What happens when we Insert Into/Update a view?

View Updates

7

UPDATE salesSinceLastMonth
 SET statusCode = ‘q’;
 WHERE orderkey = 22;

View Updates

7

UPDATE salesSinceLastMonth
 SET statusCode = ‘q’;
 WHERE orderkey = 22;

Rows in salesSinceLastMonth correspond 1-1 with
rows in lineitem. Update lineitem!

View Updates

8

INSERT INTO salesSinceLastMonth
 (orderkey, partkey, suppkey, …)
VALUES
 (22, 99, 42, …);

View Updates

8

INSERT INTO salesSinceLastMonth
 (orderkey, partkey, suppkey, …)
VALUES
 (22, 99, 42, …);

Lots of problems…
 - What if order # 22 doesn’t exist?
 - How does the insertion interact with sequences
 (e.g., lineitem.lineno)

View Updates

9

View Updates

9

Solution 1: Data Integration

View Updates

9

Solution 1: Data Integration
(CSE 636)

View Updates

9

Solution 1: Data Integration
(CSE 636)

Solution 2: INSTEAD OF triggers

View Updates

10

CREATE TRIGGER salesSinceLastMonthInsert
INSTEAD OF INSERT ON salesSinceLastMonth
REFERENCING NEW ROW AS newRow
FOR EACH ROW
 IF NOT EXISTS (
 SELECT * FROM ORDERS
 WHERE ORDERS.orderkey = newRow.orderKey)
) THEN
 INSERT INTO ORDERS(orderkey)
 VALUES (orderkey)
 END IF;
 INSERT INTO LINEITEM VALUES newRow;
END FOR;

11

Can we use views for anything else?

Materialization

12

Views exist to be queried frequently

Pre-compute and save the view’s contents!
(like an index)

Materialization Challenges

• How do we maintain the views as data changes?

• What if the view is not explicitly referenced?

• What views should be materialized?

13

Delta Queries
• If D is your Database and Q is your Query:

• Q(D) is the result of your query on the database.

• Let’s say you make a change ΔD (Insert tuple)

• Q(D+ΔD) is the new result

• If we have Q(D), can we get Q(D+ΔD) faster?

• Analogy to Sum: {34, 29, 10, 15} + {12} (88+12)

14

Query Rewriting

15

CREATE MATERIALIZED VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

Query Rewriting

15

CREATE MATERIALIZED VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

SELECT l.partkey
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
ORDER BY l.shipdate DESC
LIMIT 10;

Query Rewriting

15

CREATE MATERIALIZED VIEW salesSinceLastMonth AS
 SELECT l.*
 FROM lineitem l, orders o
 WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)

SELECT l.partkey
FROM lineitem l, orders o
WHERE l.orderkey = o.orderkey
 AND o.orderdate > DATE(’2015-03-31’)
ORDER BY l.shipdate DESC
LIMIT 10;

We can use a materialized view to speed the query up

Query Rewriting

16

SELECT LQ
FROM RQ
WHERE CQ

SELECT LV
FROM RV
WHERE CV

View Query User Query

When are we allowed to rewrite this query?

Query Rewriting

17

SELECT LQ
FROM RQ
WHERE CQ

SELECT LV
FROM RV
WHERE CV

View Query User Query

All relations in the view are part of the query join

The view condition is weaker than the query condition

The view doesn’t project away needed attributes

Query Rewriting

18

SELECT LQ
FROM RQ
WHERE CQ

SELECT LV
FROM RV
WHERE CV

View Query User Query

What does the query rewrite to?

Query Rewriting

19

SELECT LQ
FROM RQ
WHERE CQ

SELECT LV
FROM RV
WHERE CV

View Query User Query

SELECT LQ
FROM (RQ-RV), VIEW
WHERE CQ

Materialized Views

20

Materialized Views

20

Q()

Materialized Views

20

Q()

Materialized Views

20

Q()

When the base data changes, the view needs to be updated

View Maintenance

21

VIEW ← Q(D)

View Maintenance

22

WHEN D ← D+ΔD DO:
VIEW ← Q(D+ΔD)

View Maintenance

22

WHEN D ← D+ΔD DO:

Re-evaluating the query from scratch is expensive!

VIEW ← Q(D+ΔD)

View Maintenance

23

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

View Maintenance

23

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

(ideally) Smaller & Faster Query

View Maintenance

23

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

(ideally) Smaller & Faster Query

(ideally) Fast “merge” operation.

Intuition

24

D = {1, 2, 3, 4} ΔD = {5}
Q(D) = SUM(D)

Intuition

24

D = {1, 2, 3, 4} ΔD = {5}
Q(D) = SUM(D)

Q(D+ΔD) ~ O(|D|+|ΔD|)

Intuition

24

D = {1, 2, 3, 4} ΔD = {5}
Q(D) = SUM(D)

Q(D+ΔD) ~ O(|D|+|ΔD|)
VIEW + SUM(ΔD) ~ O(|ΔD|)

Intuition

25

R = {1, 2, 3}, S ={5,6} ΔR = {4}

Q(R,S) = COUNT(R x S)

Intuition

25

R = {1, 2, 3}, S ={5,6} ΔR = {4}

Q(R,S) = COUNT(R x S)

Q(R+ΔR,S) ~ O((|R|+|ΔR|) * |S|)

Intuition

25

R = {1, 2, 3}, S ={5,6} ΔR = {4}

Q(R,S) = COUNT(R x S)

Q(R+ΔR,S) ~ O((|R|+|ΔR|) * |S|)

VIEW + COUNT(|ΔR|*|S|) ~ O(|ΔR|*|S|)

Intuition

26

+ ~ U

* ~ x

Intuition

26

+ ~ U

* ~ x

Are these kinds of patterns common?

Rings/Semirings

27

This kind of pattern occurs frequently.

Semiring : < S, +, x, S0, S1 >

Any set of ‘things’ S such that…

Si + Sj = Sk

Si x Sj = Sk

Si x (Sj + Sk) = (Si x Sj) + (Sj x Sk)

Si + S0 = Si

Si x S1 = SiClosed

Distributive

Additive &
Multiplicative

“zeroes”Si x S0 = S0

Rings/Semirings

28

Ring : < S, +, x, S0, S1, - >

Any semiring where every element
has an additive inverse…

Si + (-Si) = S0

29

THE TANGENT ENDS NOW

Incremental View
Maintenance

30

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

Incremental View
Maintenance

30

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

What does ΔR represent?
Basic Challenges of IVM

Incremental View
Maintenance

30

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

What does ΔR represent?
How to interpret R + ΔR?

Basic Challenges of IVM

Incremental View
Maintenance

30

VIEW ← VIEW+ΔQ(D,ΔD)
WHEN D ← D+ΔD DO:

What does ΔR represent?
How to interpret R + ΔR?

Basic Challenges of IVM

How to compute ΔQ?

What is ΔR?

31

What is ΔR?

31

What does it need to represent?

What is ΔR?

31

What does it need to represent?

Insertions

Deletions

Updates

What is ΔR?

31

What does it need to represent?

Insertions

Deletions

Updates
(Delete Old Record & Insert Updated Record)

What is ΔR?

32

What is ΔR?

32

A Set/Bag of Insertions

A Set/Bag of Deletions

What is +?

33

A Set/Bag of Insertions

A Set/Bag of Deletions
A Set/Bag

R ΔR

What is +?

33

A Set/Bag of Insertions

A Set/Bag of Deletions
A Set/Bag

R ΔR+

+

What is +?

33

A Set/Bag of Insertions

A Set/Bag of Deletions
A Set/Bag

R ΔR+

+

R ⋃ ΔRinserted
 - ΔRdeleted

What is +?

33

A Set/Bag of Insertions

A Set/Bag of Deletions
A Set/Bag

R ΔR+

+

R ⋃ ΔRinserted
 - ΔRdeleted

But this breaks closure of ‘+’!

Incremental View
Maintenance

34

VIEW ← VIEW+ΔQ(D,ΔD)

Incremental View
Maintenance

34

VIEW ← VIEW+ΔQ(D,ΔD)

Incremental View
Maintenance

34

VIEW ← VIEW+ΔQ(D,ΔD)

Construct ΔQ(R,ΔR,S,ΔS,…)
Given Q(R,S,…)

Delta Queries

35

R

σ

Delta Queries

35

R

σ

R ΔR

Original R Inserted
Tuples of R

Delta Queries

35

R

σ

R ΔR

σ

Original R Inserted
Tuples of R

Delta Queries

35

R

σ

R ΔR

σ

Original R Inserted
Tuples of R

Delta Queries

35

R

σ

R ΔR

σ

Original R Inserted
Tuples of R

Does this work for deleted tuples?

Delta Queries

36

R

π

R ΔR

π

Delta Queries

36

R

π

R ΔR

π

Does this work (completely) under set semantics?

Delta Queries

37

R1 R1 ΔR1R2

U

R2 ΔR2

Delta Queries

37

R1 R1 ΔR1R2

U

R2 ΔR2

Delta Queries

37

R1 R1 ΔR1R2

U

R2 ΔR2

Delta Queries

38

R R ΔRS

x

S

Delta Queries

39

R : { 1, 2, 3 } S : { 5, 6}

Delta Queries

39

R : { 1, 2, 3 } S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

Delta Queries

39

R : { 1, 2, 3 } S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }

Delta Queries

39

R : { 1, 2, 3 } S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }

(R+ΔR) x S = { <1,5>, <1, 6>, <4,5>, <4,6> }

Delta Queries

39

R : { 1, 2, 3 } S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }

(R+ΔR) x S = { <1,5>, <1, 6>, <4,5>, <4,6> }

Δinserted(R x S) = ΔRinserted x S
Δdeleted(R x S) = ΔRdeleted x S

Delta Queries

39

R : { 1, 2, 3 } S : { 5, 6}
R x S = { <1,5>, <1, 6>, <2,5>, <2,6>, <3,5>, <3,6> }

ΔRinserted = { 4 }
ΔRdeleted = { 3,2 }

(R+ΔR) x S = { <1,5>, <1, 6>, <4,5>, <4,6> }

Δinserted(R x S) = ΔRinserted x S
Δdeleted(R x S) = ΔRdeleted x S

What if R and S both change?

Delta Queries

40

Computing a Delta Query

Delta Queries

41

Delta Queries

41

Delta Queries

41

The original
query

Delta Queries

41

The original
query The delta query

42

How about an example…

Delta Queries

43

CUSTOMER ORDERS

LINEITEM

Let’s say you have an insertion into LINEITEM

Delta Queries

44

CUSTOMER ORDERS

LINEITEM

Delta Queries

45

CUSTOMER ORDERS

LINEITEM

Delta Queries

45

CUSTOMER ORDERS

LINEITEM

= ø

Delta Queries

46

CUSTOMER ORDERS

LINEITEM

Delta Queries

47

CUSTOMER ORDERS

LINEITEM

Delta Queries

48

SELECT *
FROM CUSTOMER C, ORDERS O, DELTA_LINEITEM DL
WHERE C.custkey = O.custkey
 AND DL.orderkey = O.orderkey
 AND C.mktsegment = …
 AND O.orderdate = …
 AND DL.shipdate = …

Multisets

49

{ 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5 }
(not compact)

{ 1 → x3, 2 → x5, 3 → x2, 4 → x6, 5 → x1 }
Multiset representation: Tuple → # of occurrences

Multisets

49

{ 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5 }
(not compact)

{ 1 → x3, 2 → x5, 3 → x2, 4 → x6, 5 → x1 }
Multiset representation: Tuple → # of occurrences

multiplicity

Multiset Deltas

50

Insertions = Positive Multiplicity

Deletions = Negative Multiplicity

+ = Bag/Multiset Union

