
Transactions &
Update Correctness

April 11, 2017

Correctness

• Data Correctness (Constraints)

• Query Correctness (Plan Rewrites)

• Update Correctness (Transactions)

What could go wrong?
• Parallelism: What happens if two updates

modify the same data?

• Maximize use of IO / Minimize Latencies.

• Persistence: What happens if something
breaks during an update?

• When is my data safe?

What does it mean for a database
operation to be correct?

What is an Update?

• INSERT INTO …?

• UPDATE … SET … WHERE …?

• Non-SQL?

Can we abstract?

Commit

Abort

Abstract Update Operatons

Time

Read Read Read

Write Write

[Transaction]

What does it mean for a database
operation to be correct?

Transaction

Transaction Correctness
• Reliability in database transactions guaranteed by ACID

• A - Atomicity (“Do or Do Not, there is nothing like try”) -
usually ensured by logs

• C - Consistency (“Within the framework of law”) - usually
ensured by integrity constraints, validations, etc.

• I - Isolation (“Execute in parallel or serially, the result
should be same”) - usually ensured by locks

• D - Durability (“once committed, remain committed”) -
usually ensured at hardware level

Atomicity
• A transaction completes by committing, or

terminates by aborting.

• Logging is used to undo aborted transactions.

• Atomicity: A transaction is (or appears as if it
were) applied in one ‘step’, independent of other
transactions.

• All ops in a transaction commit or abort
together.

Isolation

• Intuitively, T1 transfers $100 from A to B and T2
credits both accounts with interest.

• What are possible interleaving errors?

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Example: Schedule

A=A+100

B=B-100

A=1.06*A

B=1.06*B

Time T1 T2

OK!

Example: Schedule

A=A+100

B=B-100

A=1.06*A

B=1.06*B

Time T1 T2

Not OK!

Example:The DBMS’s View

R(A)
W(A)

R(B)
W(B)

R(A)
W(A)

R(B)
W(B)

Time T1 T2

Not OK!

What went wrong?

What could go wrong?

T1: R(A),W(A), R(B),W(B),ABRT
T2: R(A),W(A),CMT,

T1: R(A), R(A),W(A),CMT
T2: R(A),W(A),CMT,

Unrepeatable Reads
(read-write/RW conflicts)

Reading uncommitted data
(write-read/WR conflicts; aka “Dirty Reads”)

What could go wrong?

T1: W(A), W(B),CMT
T2: W(A),W(B),CMT,

Overwriting Uncommitted Data
(write-write/WW conflicts)

Serial Schedule
No interleaving between transactions at all

Serializable Schedule
Guaranteed to produce equivalent output

to a serial schedule

Schedule
An ordering of read and write operations.

Conflict Equivalence

Possible Solution: Look at read/write, etc… conflicts!

Allow operations to be reordered as long as conflicts
are ordered the same way

Conflict Equivalence: Can reorder one schedule
into another without reordering conflicts.

Conflict Serializability: Conflict Equivalent to a serial
schedule.

Conflict Serializability
• Step 1: Serial Schedules are Always Correct

• Step 2: Schedules with the same operations
and the same conflict ordering are conflict-
equivalent.

• Step 3: Schedules conflict-equivalent to an
always correct schedule are also correct.

• … or conflict serializable

Example

R(B)

R(A)

Time T1 T2

W(A)

W(B)

Conflict

R(B)

R(A)

T1 T2

W(A)

W(B)

vs.

vs.

Example

R(B)

R(A)

Time T1 T2

W(A)

W(B)

R(B)

R(A)

T1 T2

W(A)

W(B)
1

2

1

2

1: T2 → T1
2: T1 → T2

1: T2 → T1
2: T2 → T1≠

Equivalence

• Look at the actual effects

• Can’t determine effects without running

• Look at the conflicts

• Too strict

• Look at the possible effects

22

Example

R(A)

W(A)

W(A)

Time T1 T2 T3

W(A)

Example

R(A)

W(A)

W(A)

Time T1 T2 T3

W(A)

Write order irrelevant
(T3 overwrites either way)

Information Flow

T1

R(…)

Old State New State

Information Flow

T1 T2 T3

R(…) R(…) R(…)

ImportantNot Important

Information Flow

Multiple Transactions

R(…) R(…) R(…)

View Serializability
Possible Solution: Look at data flow!

View Equivalence: All reads read from the same writer
Final write in a batch comes from the same writer

View Serializability: View Equivalent to a serial schedule.

View Equivalence
• For all Reads R

• If R reads old state in S1, R reads old state in S2

• If R reads Ti’s write in S1, R reads the the same write in S2

• For all values V being written.

• If W is the last write to V in S1, W is the last write to V in S2

• If these conditions are satisfied, S1 and S2 are view-equivalent

View Serializability
• Step 1: Serial Schedules are Always Correct

• Step 2: Schedules with the same information
flow are view-equivalent.

• Step 3: Schedules view-equivalent to an
always correct schedule are also correct.

• … or view serializable

Enforcing Serializability
• Conflict Serializability:

• Does locking enforce conflict serializability?

• View Serializability

• Is view serializability stronger, weaker, or
incomparable to conflict serializability?

• What do we need to enforce either fully?

How to detect conflict
serializable schedule?

T1 T2 T3

W(a)

R(b)

W(d)

W(b)

R(d)

W(d)

!
Schedule!(2)!–!(33!Points)!
!

T1! T2! T3!
! ! !

W(a)! ! !
! ! !
! ! !
! ! !
! R(b)! !
! ! !
! ! !
! ! !
! ! W(d)!
! ! !
! ! !

W(b)! ! !
! ! !
! ! !
! R(d)! !
! ! !
! ! !
! ! W(d)!
! ! !
! ! !
!
Conflict!Serializable! View!Serializable! 2PL!

NO! NO! NO!
!
Justification!for!Schedule!(2):!
!
!
!

!
!
It!is!not!conflict!serializable!because!the!precedence!graph!has!cycle!
!

E. It can not be strict 2PL because T2 will have to unlock(B) at the very end and hence it will
be impossible for T1 to w(B)

x� It is not serializable because of a cycle in the precedence graph

T1

T1

T2

T3

Precedence Graph
.

 Every non-serializable schedule can not be 2PL or strict 2PL.
x� It is serializable because it has an acyclic graph

T1

T1

T2

T3

Precedence Graph

 and 2PL because locks can be assigned as follows (many similar solutions are possible)
T1 T2 T3
 ls(D)
 r(D)
ls(A)
w(A)
 ls(B); ls(D)
 R(B)
 u(B)
ls(B)
w(B)
u(A); u(B)
 R(D)
 u(D)
 lx(D)
 w(D)
 u(D)
It can not be strict 2PL for the same reasons with the first schedule.

Cycle!
Not Conflict serializable

Not conflict serializable but
view serializable

T1 T2 T3

W(y)

W(y)

W(x)

W(x)

W(x)

T1 T2

T3

Satisfies 3 conditions of
view serializability

Every view serializable schedule which is not conflict
serializable has blind writes.

How can conflicts be avoided?

Conservative
Concurrency

Control

Optimistic
Concurrency

Control

Conservative Concurrency
Control

• How can bad schedules be detected?

• What problems does each approach introduce?

• How do we resolve these problems?

Two-Phase Locking

• Phase 1: Acquire (do not release) locks.

• Phase 2: Release (do not acquire) locks.
Why?

Can we do even better?

Example
T1 T2 T3

R(d)

W(a)

R(b)

W(d)

W(b)

R(d)

T1 T2

T3

Acyclic -
Conflict Serializable

2PL exists

Example
T1 T2 T3

L(d)
R(d)

L(a)
W(a)

L(b)
R(b)

W(d)
R-L(d)

L(d)
R-L(b)

L(b) R-L(a)
W(b) R-L(b)

R(d)
R-L(d)

Need for shared and
exclusive locks

T1 T2 T3

L(d)
R(d)

L(a)
W(a)

L(b)
R(b)

L(b)
W(b)

R(d)

W(d)

Justification!for!Schedule!(3):!
!
!
!
!

!
!
It!is!conflict!serializable!because!the!precedence!graph!is!acyclic.!
!
Every!conflict!serializable!schedule!is!view!serializable.!
!
It!is!2PL!because!locks!can!be!assigned!in!the!given!fashion!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

E. It can not be strict 2PL because T2 will have to unlock(B) at the very end and hence it will
be impossible for T1 to w(B)

x� It is not serializable because of a cycle in the precedence graph

T1

T1

T2

T3

Precedence Graph
.

 Every non-serializable schedule can not be 2PL or strict 2PL.
x� It is serializable because it has an acyclic graph

T1

T1

T2

T3

Precedence Graph

 and 2PL because locks can be assigned as follows (many similar solutions are possible)
T1 T2 T3
 ls(D)
 r(D)
ls(A)
w(A)
 ls(B); ls(D)
 R(B)
 u(B)
ls(B)
w(B)
u(A); u(B)
 R(D)
 u(D)
 lx(D)
 w(D)
 u(D)
It can not be strict 2PL for the same reasons with the first schedule.

It is conflict Serializable
but requires granular

control of locks

Need for shared and
exclusive locks

T1 T2 T3

SL(d)
R(d)

XL(a)
W(a)

SL(b) SL(d)
R(b) R-SL(b)

XL(b)
W(b) R-XL(b)

R(d)
R-SL(d)

XL(d) W(d)
R-XL(d)

uWTlT EOLPvBU 7G7-Af 7)v-R 7AqA1ZE EOLP fONA7 Amx

-2 u_u
“•HZX ' HZ
n

“’k £Z
C ■k HZ
C
“’k Hm
C ■k Hm
C

„’2£m
 9 G’O
^ kH Z
 C ^ kH m

„•Hm
2 ■ ’ Hm
C =—zHm
2
^—HZ
2 ^—£m
C

I’”!■ pv,pgs © •/FO!; !•’G” •FW■O WGO ~/;!•’[;K/X•

4K&’/ &FW& &F ■•!;&’G” •/FO!; ’G I’” pv,pg ’• /KG“;’/&c•■’W;’>W-;, TF
/KG“;’/&c?!’[W;G& •■’W; K■O■ ’• lTu3’
 [G &FK!”F -i •&W■&O “’■•&, TF
W■”!YG&] ”W[’G ™/&’KG pv,S,n &K •FK] &FW& ;”W; •/FO!;• K“ /KG•’•&G&
u8J &■WG•W/&’KG• W■ /KG“;’/&c•■’W;’>W-; WZZ;’• &K •<•&Y•]’&F •FW■O WGO
~/;!•’[;K/X• W•];;, UG I’”, pv,pg -k !G;K/X• -“K■ T’ •K]]K!;O ~Z/&
-k &K Z■/O T’ ’G &F •■’W; K■O■,

w5vyvJ o>•^K▲/9/{/▲X GK▲</jF*
U“] !• •[■W; ;K/X YKO• &FG &F •/FO!;■ GO• W ZK;’/< W-K!&]FG ’&
/WG ”■WG& W ;K/X ■?!•& ”’[G &F K&F■ ;K/X• &FW& YW< W;■WO< - F;O KG &F
•WY OW&W-W• ;YG&, © (>{#3”—j—’—”X {3”■—„ ’• W /KG[G’G&]W< &K O•/■’-
;K/XcYWGW”YG& ZK;’/’•, U& FW• W ■K] WGO /K;!YG “K■ W/F ;K/X YKO, TF
■K]• /K■■•ZKGO &K W ;K/X &FW& ’• W;■WO< F;O KG WG ;YG& V -< WGK&F■
&■WG•W/&’KG WGO &F /K;!YG• /K■■•ZKGO &K &F YKO K“ W ;K/X KG V &FW& ’•
■?!•&O, TF ■!; “K■ !•’G” W /KYZW&’-’;’&< YW&■’~ “K■ ;K/Xc”■WG&’G” O/’•’KG•
’•s

£ 6 /WG ”■WG& &F ;K/X KG V ’G YKO L ’“ WGO KG;< ’“ “K■ [■< ■K] 1 •!/F
&FW& &F■ ’• W;■WO< W ;K/X KG V ’G YKO 1 -< •KY K&F■ &■WG•W/&’KG
&F■ ’• W *L•' ’G /K;!YG 0,

JK/X ■?!•&O
™ 3

JK/X F;O ™ L• 4K
’G YKO 3 4K 4K

I’”!■ pv,p:s TF /KYZW&’-’;’&< YW&■’~ “K■ •FW■O WGO ~/;!•’[;K/X•

b ~WY Z; pv,pns I’”!■ pv,p: ’• &F /KYZW&’-’;’&< YW&■’~ “K■ •FW■O l™
 WGO
~/;!•’[l3
 ;K/X•, TF /K;!YG “K■ 7 •W<• &FW&] /WG ”■WG& W •FW■O ;K/X KG

Reader/Writer (S/X)
• When accessing a DB Entity…

• Table, Row, Column, Cell, etc…

• Before reading: Acquire a Shared (S) lock.

• Any number of transactions can hold S.

• Before writing: Acquire an Exclusive (X) lock.

• If a transaction holds an X, no other transaction
can hold an S or X.

What do we lock?

Is it safe to allow some transactions to lock tables
while other transactions to lock tuples?

New Lock Modes

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 44 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Even within the same application, there may be a
need for locks at multiple levels of granularity.

Database elements are organized in a hierarchy:

relations R1

blocks B1 B2 B3 B4

tuples t1 t2 t3 t4 t5 contained in

Hierarchical Locks
• Lock Objects Top-Down

• Before acquiring a lock on an object, an xact must
have at least an intention lock on its parent!

• For example:

• To acquire a S on an object, an xact must have an IS,
IX on the object’s parent (why not S, SIX, or X?)

• To acquire an X (or SIX) on an object, an xact must
have a SIX, or IX on the object’s parent.

New Lock Modes

None IS IX S X

None valid valid valid valid valid

IS valid valid valid valid fail

IX valid valid valid fail fail

S valid valid fail valid fail

X valid fail fail fail fail

Lock Mode(s) Currently Held By Other Xacts

Lo
ck

 M
od

e
D

es
ir

ed

Example
• An I lock for a super-element constrains the locks

that the same transaction can obtain at a
subelement.

• If Ti has locked the parent element P in IS, then Ti
can lock child element C in IS, S.

• If Ti has locked the parent element P in IX, then Ti
can lock child element C in IS, S, IX, X.

Example
• T1 wants exclusive lock on tuple t2

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 66 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
To request an S (or X) lock on some database element A, we
traverse a path from the root of the hierarchy to element A.
If we have reached A, we request the S (X) lock.
Otherwise, we request an IS (IX) lock.
As soon as we have obtained the requested lock, we
proceed to the corresponding child (if necessary).

R1
B1

B2 B3 B4T1(IX)

t2 t3 t4 t5

T1(IX)

T1(X)

Example
• T2 wants to request an X lock on tuple t3

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 99 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Example
T2 wants to request an X lock on tuple t3

R1

B1
B2 B3 B4T1(IX)

t2 t3 t4 t5

T1(IX)

T1(X)

T2(IX)

T2(IX)

T2(X)

Example
T2 wants to request an S lock on block B2

CMPT 454: Database Systems II CMPT 454: Database Systems II –– Concurrency Control (2)Concurrency Control (2) 1010 / 29/ 29

Locks With Multiple GranularityLocks With Multiple Granularity
Example
T2 wants to request an S lock on block B2

R1

B1

B2 B3
B4T1(IX)

t2 t3 t4 t5

T1(IX)

T1(X)

T2(IS)

T2(S)
not granted!

Deadlocks
• Deadlock: A cycle of transactions waiting on each

other’s locks
• Problem in 2PL; xact can’t release a lock until it

completes
• How do we handle deadlocks?

• Anticipate: Prevent deadlocks before they
happen.

• Detect: Identify deadlock situations and abort
one of the deadlocked xacts.

Deadlock Detection
• Baseline: If a lock request can not be satisfied, the

transaction is blocked and must wait until the
resource is available.

• Create a waits-for graph:

• Nodes are transactions

• Edge from Ti to Tk if Ti is waiting for Tk to release a
lock.

• Periodically check for cycles in the graph.

Example

R(A)

W(B)

S(C)

Time T1 T2 T3

S(B)

S(A)

T4

X(B)

R(C)
X(C)

X(B)
X(A)

Example

R(A)

W(B)

S(C)

Time T1 T2 T3

S(B)

S(A)

T4

X(B)

R(C)
X(C)

X(B)
X(A)

T1

T4

T2

T3

How do we avoid deadlock?

React to
Deadlock
Situations

Avoid
Deadlock
Situations

Deadlock Prevention
• Ensure that dependencies are monotonic (and

consequently acyclic)

• Assign each transaction a priority based on the
timestamp at which it starts.

• When a transaction fails to acquire a lock:

• Wait if monotonicity would be preserved.

• Kill one transaction otherwise.

Deadlock Prevention
• Policy 1 (Wait-Die): If Ti has a higher priority,

wait for Tk, otherwise Ti aborts.

• Policy 2 (Wait-Wound): If Ti has a higher
priority, Tk aborts, otherwise Ti waits.

• Protect fairness by restarting the aborted
transaction with its original timestamp.

