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Why Scale Up?
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Scan of 1 PB at 300MB/s (SATA r2 Limit)

~1 Hour

… 
(x1000)

~3.5 Seconds



Data Parallelism
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A A A CBA

Replication Partitioning



Operator Parallelism
• Pipeline Parallelism: A task breaks down into 

stages; each machine processes one stage. 

• Partition Parallelism: Many machines doing the 
same thing to different pieces of data.
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Types of Parallelism

• Both types of parallelism are natural in a 
database management system.
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SELECT SUM(…) FROM Table WHERE …

LOAD SELECT AGG Combine

Sequential
Operation



DBMSes: The First || 
Success Story

• Every major DBMS vendor has a || version. 

• Reasons for success: 

• Bulk Processing (Partition ||-ism). 

• Natural Pipelining in RA plan. 

• Users don’t need to think in ||.
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Types of Speedup

• Speed-up ||-ism 

• More resources = 
proportionally less time 
spent. 

• Scale-up ||-ism 

• More resources = 
proportionally more data 
processed.
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Parallelism Models
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Disk



Parallelism Models
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CPU

Memory

Disk

…

How do the nodes communicate?



Parallelism Models
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CPU

Memory

Disk

…

Option 1: “Shared Memory” available to all CPUs

e.g., a Multi-Core/Multi-CPU System



Parallelism Models
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CPU

Memory

Disk

…

Used by most AMD servers

Option 2: Non-Uniform Memory Access.



Parallelism Models
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CPU

Memory

Disk

…

Each node interacts with a “disk” on the network.

Option 3: “Shared Disk” available to all CPUs



Parallelism Models
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CPU

Memory

Disk

…

Examples include MPP, Map/Reduce.  Often used as basis for other abstractions.

Option 4: “Shared Nothing” in which all communication is explicit.



Parallelizing
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OLAP - Parallel Queries

OLTP - Parallel Updates



Parallelizing
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OLAP - Parallel Queries

OLTP - Parallel Updates



Parallelism & Distribution
• Distribute the Data 

• Redundancy 

• Faster access 

• Parallelize the Computation 

• Scale up (compute faster) 

• Scale out (bigger data)
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Operator Parallelism

• General Concept: Break task into individual units 
of computation. 

• Challenge: How much data does each unit of 
computation need? 

• Challenge: How much data transfer is needed to 
allow the unit of computation?
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Same challenges arise in Multicore, CUDA programming.



Parallel Data Flow
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A

No Parallelism

A



Parallel Data Flow
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A A1 N

N-Way Parallelism



Parallel Data Flow
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A A1 N

B B1 N

Chaining Parallel Operators

???



Parallel Data Flow
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A A1 N

B B1 N

One-to-One Data Flow (“Map”)



Parallel Data Flow
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A A1 N

B B1 N

One-to-One Data Flow



Parallel Data Flow
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A A1 N

B B1 N

Many-to-Many Data Flow

Extreme 1 
All-to-All 

All nodes send 
all records to 

all downstream 
nodes

Extreme 2 
Partition 

Each record 
goes to exactly 

one downstream 
node



Parallel Data Flow
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A A1 N

BB

Many-to-One Data Flow (“Reduce/Fold”)



Parallel Operators
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Select Project Union (bag)

What is a logical “unit of computation”?

Is there a data dependency between units?

(1 tuple)

(no)



Parallel Operators
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Select Project Union (bag)

A A1 N

1/N Tuples 1/N Tuples



Parallel Joins
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FOR i IN 1 to N
  FOR j IN 1 to K
    JOIN(Block i of R,
         Block j of S)

One Unit of Computation

Partition
Partition



Parallel Joins
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Practical Concerns
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R1⋈S1 R1⋈S2 R2⋈S1 RN⋈SM

R1 R2 RN… S1 S2 SM…

UNION

Where does the computation happen?
How does the data get there?



Distributing the Work
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S

⋈B

R

Let’s start simple… what can we do with no partitions?

R and S may be any RA expression…



Distributing the Work
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S

⋈B

R
Node 1

No Parallelism!



Distributing the Work
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S

⋈B

R
Node 2Node 1

Node 3

Lots of Data Transfer!

All of R
and

All of S
get sent!



Distributing the Work
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S

⋈B

R
Node 2Node 1

All of R
get sent

Better!  We can guess whether R or S is smaller.



Distributing the Work
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What can we do if R is partitioned?

R2

⋈B

SR1

⋈B

U



Distributing the Work
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There are lots of partitioning strategies, but this one is interesting….

R2

⋈B

SR1

⋈B

U

Node 2 Node 3Node 1
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Distributing the Work
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… it can be used as a model for partitioning S…

Node 2 Node 3Node 1
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Distributing the Work
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… it can be used as a model for partitioning S…

Node 2 Node 3Node 1
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Distributing the Work
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…and neatly captures the data transfer issue.

Node 2 Node 3Node 1



Parallel Joins
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Parallel Joins
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R.B
B<25

25≤B<50

50≤B<75

75≤B

R ⋈R.B < S.B S:    Which Partitions of S Can Produce Output?

S.
B
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Can we further reduce the amount of data sent?



Sending Hints
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Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…



Sending Hints
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Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…

Send me Rk



Sending Hints
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Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…

Rk



Sending Hints
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Node 1 Node 2

Rk Si

Rk ⋈B Si
The smarter approach…

 πB(       ) 
Si



Sending Hints
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Node 1 Node 2

Rk Si

Rk ⋈B Si
The smarter approach…

 πB(       ) 
Si

       ⋈ πB(       ) 
Rk Si



Sending Hints
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Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<1,A>
<2,B>
<2,C>
<3,D>
<4,E>

<2,X>
<3,Y>
<6,Y>



Sending Hints
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Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<2,X>Send me rows 
with a ‘B’ of 

2,3, or 6 <3,Y>
<1,A>
<2,B>
<2,C>
<3,D>
<4,E>

<6,Y>



Sending Hints
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Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>Send me rows 
with a ‘B’ of 

2,3, or 6 <3,Y>

<2,B>
<2,C>
<3,D>

<4,E> This is called a semi-join.

<6,Y>



Sending Hints
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Now Node 1 sends as little data as possible…

… but Node 2 needs to send a lot of data.

Can we do better?



Sending Hints
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Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bits

1
0
0

0
1

0
<6,Y>0



Sending Hints
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Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bits

1
0
0

0
1

0Send me data 
with a parity 

bit of ‘0’
<6,Y>0



Sending Hints
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Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bit

1
0
0

0
1

0Send me data 
with a parity 

bit of ‘0’

<2,B>
<2,C>
<4,E>

Node 1 sending too much is ok!
(Node 2 still needs to compute ⋈B)

<6,Y>0

Problem: One parity bit is too little



Sending Hints
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Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bit

1
0
0

0
1

0
1

Problem: One parity bit is too little

<3,Y>
<6,Y>0



Sending Hints
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Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 2: Parity Bits

01
10
10

00
11

10
11<3,Y>

<6,Y>10

Send me data 
with parity 

bits 10 or 11

<2,B>
<2,C>
<3,D>

Problem: Almost as much data as πB



Sending Hints
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Can we summarize the parity bits?



Bloom Filters
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Alice 
Bob 
Carol 
Dave



Bloom Filters
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Bloom
Filter

Alice 
Bob 
Carol 
Dave



Bloom Filters
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Bloom
Filter

Alice 
Bob 
Carol 
Dave

Is Alice part 
of the set?

Is Eve part of 
the set?

Is Fred part 
of the set?

Yes

No

YesBloom Filter Guarantee
Test definitely returns Yes if the element is in the set 

Test usually returns No if the element is not in the set



Bloom Filters
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A Bloom Filter is a bit vector
M - # of bits in the bit vector

K - # of hash functions

For ONE key (or record): 
  For i between 0 and K: 
    bitvector[  hashi (key) % M  ] = 1

Each bit vector has ~K bits set



Bloom Filters
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00101010

01010110

10000110

01001100

Key 1

Key 2

Key 3

Key 4

Filters are combined 
by Bitwise-OR

e.g. (Key 1 |  Key 2)

= 01111110

How do we test for inclusion?
(Key & Filter) == Key?

(Key 1 & S) = 00101010
(Key 3 & S) = 00000110
(Key 4 & S) = 01001100

X
√

False Positive
√



Sending Hints
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Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>



Sending Hints
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Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

Send me rows 
with a ‘B’ in the 

bloom filter
summarizing 

the set {2,3,6}



Sending Hints
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Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

<2,B>
<2,C>
<3,D>
<4,E>

This is called a bloom-join.

Send me rows 
with a ‘B’ in the 

bloom filter
summarizing 

the set {2,3,6}



Parallel Aggregates

65

Algebraic: Bounded-size intermediate state 
(Sum, Count, Avg, Min, Max)

Holistic: Unbounded-size intermediate state 
(Median, Mode/Top-K Count, Count-Distinct; 

Not Distribution-Friendly)



Fan-In Aggregation
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A A1 N

BSUM



Fan-In Aggregation
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A1 A2 A3 A4 A5 A6 A7 A8

SUM 8 Messages



Fan-In Aggregation
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A1 A2 A3 A4 A5 A6 A7 A8

SUM 4 Messages

SUM1 SUM2 SUM3 SUM4

2 Messages 
(each)



Fan-In Aggregation
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A1 A2 A3 A4 A5 A6 A7 A8

SUM 2 Messages

SUM1 SUM2 SUM3 SUM4

2 Messages 
(each)

SUM’1 SUM’2



Fan-In Aggregation
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If Each Node Performs K Units of Work… 
(K Messages) 

How Many Rounds of Computation Are Needed?

LogK(N)



Fan-In Aggregation 
Components
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Combine(Intermediate1, …, IntermediateN) 
= Intermediate

<SUM1, COUNT1> ⊗ … ⊗ <SUMN, COUNTN> 
 = <SUM1+…+SUMN, COUNT1+…+COUNTN>

Compute(Intermediate) = Aggregate

Compute(<SUM, COUNT>) = SUM / COUNT


