
Parallel DBs
April 25, 2017

1

Sending Hints

2

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

Sending Hints

3

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

Send me rows
with a ‘B’ in the

bloom filter
summarizing

the set {2,3,6}

Sending Hints

4

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

<2,B>
<2,C>
<3,D>
<4,E>

This is called a bloom-join.

Send me rows
with a ‘B’ in the

bloom filter
summarizing

the set {2,3,6}

Bloom Filter Construction

5

00000000000000000000
Empty Filter (Size: m = 20)

Use hash functions to pick a fixed number of bits (k = 3)
h1(X) = 13; h2(X) = 2; h3(X) = 5

Set those bits to 1
00100100000001000000

Bloom Filter Lookup

6

00101010

01000110

10000110

01001100

Key 1

Key 2

Key 3

Key 4

Filters are combined
by Bitwise-OR

e.g. (Key 1 | Key 2)

= 01101110

How do we test for inclusion?
(Key & Filter) == Key?

(Key 1 & S) = 00101010
(Key 3 & S) = 00000110
(Key 4 & S) = 01001100

X
√

False Positive
√

Bloom Filter Parameters

7

m = size of the bit vector

k = # of bits set per element
More Bits – More false positives
Fewer Bits – More false positives

(Need to balance #)

Bigger – More space used
Smaller – More false positives

Bloom Filters

8

How do we pick M and K?

Bloom Filters

9

Probability that 1 bit is set by 1 hash fn

1/m

Bloom Filters

10

Probability that 1 bit is not set by 1 hash fn

1/m1 -

Bloom Filters

11

Probability that 1 bit is not set by k hash fns

1/m1 -()k

Bloom Filters

12

Probability that 1 bit is not set by k hash fns
for n records

1/m1 -()k n

So for an arbitrary record, what is the probability
that all of its bits will be set?

Bloom Filters

13

Probability that 1 bit is set by k hash fns
for n records

1/m1 -()k n1 -

Bloom Filters

14

Probability that all k bits are set by k hash fns
for n records

1/m1 -()k n1 -() k≈

-kn/m(1- e)≈ k

Bloom Filters

15

Minimal P[collision]

m/n = 10

m/n = 5

m/n = 20 m/n = 30

Minimal P[collision] is at k ≈ 0.7 ∙ m/n

m/n k p(collision)

5 3 ~9.2%

10 8 ~0.85%

20 14 ~0.007%

30 21 ~0.000055%

Bloom Filters

16

Minimal P[collision]

m/n = 10

m/n = 5

m/n = 20 m/n = 30

5 bits/record, 3 bits set = 10% chance of collision

m/n k p(collision)

5 3 ~9.2%

10 8 ~0.85%

20 14 ~0.007%

30 21 ~0.000055%

Parallelizing

17

OLAP - Parallel Queries

OLTP - Parallel Updates

Parallelism Models

18

CPU

Memory

Disk

…

We’ll be talking about “shared nothing” for updates.
Other models are easier to work with.

Option 4: “Shared Nothing” in which all communication is explicit.

Data Parallelism

19

A A A CBA

Replication Partitioning

(needed for safety)

Updates
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages are

20

What can go wrong?

Node 1

T1: W(X)
T2: W(X)
T2: W(Y)
T1: W(Y)X

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

21

What can go wrong?

Node 1 Node 2

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

22

What can go wrong?

Node 1 Node 2

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

23

What can go wrong?

Node 1 Node 2

XY YX

Updates (in Parallel)
• Non-Serializable Schedules

• One Compute Node Fails

• A Communication Channel Fails

• Messages delivered out-of-order

24

What can go wrong?
Classical Xacts

“Partitions”

Consensus

Data Parallelism

25

A A A CBA

Replication Partitioning

(needed for safety)

Simple Consensus

26

A A BB

Node 1 Node 2

Master Slave

YX YX

“Safe” … but Node 1 is a bottleneck.

Simpl-ish Consensus

27

A A
Node 1 Node 2

Master for A Master for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

Y

X

Y

X

Partitions

28

Node 1 Node 2

Node 1
From Node 1’s perspective, how are these cases different?

Channel Failure

Node Failure

Node 2

29

They’re not!

Failure Recovery

• Node Failure

• The node restarts and resumes serving requests.

• Channel Failure

• Node 1 and Node 2 regain connectivity.

30

Partitions

31

Node 1 Node 2

A=1
B=5

A=1
B=5

Partitions

32

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

Partitions

33

Node 1

Option 1: Node 1 takes over

Node 2

Node 2 is down.
I control A & B now!

A=1
B=5

Partitions

34

Node 1

Option 1: Node 1 takes over

Node 2

Node 2 is down.
I control A & B now!

A = 2
B = 6

A=2
B=6

Partitions

35

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6
A=2
B=6

Partitions

36

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

A=1
B=5

Partitions

37

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

A=1
B=5

Node 2 is down.
I control A & B now!

Partitions

38

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6

A=1
B=5

Node 2 is down.
I control A & B now!

A = 2
B = 6

Partitions

39

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6

A=1
B=5

INCONSISTENCY!

Partitions

40

Node 1 Node 2

Option 2: Wait

Partitions

41

Node 1 Node 2

A = 2
B = 6

Option 2: Wait

Partitions

42

Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait

Partitions

43

Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait

Partitions

44

Node 1 Node 2

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

All set

Option 2: Wait

Partitions

45

Node 1 Node 2

Option 2: Wait

Partitions

46

Node 1

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Option 2: Wait

Partitions

47

Node 1

I can’t talk to Node 2
Let me wait!

A = 2
B = 6

Still waiting…

Option 2: Wait

Partitions

48

Option 1: Assume Node Failure

All data is available… but at risk of inconsistency.

Option 2: Assume Connection Failure

All data is consistent… but unavailable

49

C A P
o
n
s
i
s
t
e
n
c
y

v
a
i
l
a
b
i
l
i
t
y

or or

a
r
t
i
t
i
o
n

Traditionally: Pick any 2

T
o
l
e
r
a
n
c
e

Simpl-ish Consensus

50

A A
Node 1 Node 2

Master for A Master for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

Y

X

Y

X

Simpl-ish Consensus

51

A A
Node 1 Node 2

Master for A Master for B

What if we need to coordinate between A & B?

BB

Y

X

Y

X Withdraw $1000
from A

Deposit $1000
into B

Naive Commit

52

Node 1 Node 2Coordinator

ACK ACK

Safe to Commit ?

Safe to Commit?

W(A,B)

53

That packet sure does look tasty…

Naive Commit

54

Node 1 Node 2Coordinator

W(A,B)

ACK

Is it safe to abort?

Naive Commit

55

Node 1 Node 2Coordinator

ACK ACK

What now?

W(A,B)

Naive Commit

56

Node 1 Node 2Coordinator

W(A)

ACK

How do we know Node 2 even still exists?

2-Phase Commit

• One site selected as a coordinator.

• Initiates the 2-phase commit process.

• Remaining sites are subordinates.

• Only one coordinator per xact.

• Different xacts may have different coordinators.

57

2-Phase Commit

• Coordinator sends ‘prepare’ to each subordinate.

• When subordinate receives ‘prepare’, it makes a
final decision: Commit or Abort.

• The transaction is treated as if it committed
for conflict detection.

• The subordinate logs ‘prepare’, or ‘abort’

• The subordinate responds ‘yes’, or ‘no’

58

2-Phase Commit

• If coordinator receives ‘no’ from any
subordinate, it tells subordinates to ‘abort’.

• Can treat timeouts as ‘no’s

• If coordinator receives ‘yes’ from all
subordinates, it tells subordinates to ‘commit’

• In both cases, the coordinator first logs the
decision and forces the log to local storage.

59

2-Phase Commit

• Subordinates perform abort or commit as
appropriate (logging as in single-site ARIES)

• Subordinates ‘ack’nowledge the coordinator.

• The transaction is complete once the
coordinator receives all ‘acks’.

60

2PC for Replication

• Optimization: We don’t need 100% responses
from replicas.

• Replicas can be reconstructed from others.

• Asserting ‘preparedness’ can be difficult.

• How much failure tolerance do we want?

• We can tolerate N failures by waiting for N+1
responses during the ‘prepare’ phase.

61

Recovery

62

How do we recover from a (transient)
coordinator crash in Phase 1?

What information/communication state is lost?

Can it be recovered?

(Does it need to be?)

Recovery

63

How do we recover from a (transient)
coordinator crash in Phase 2?

What information/communication state is lost?

Can it be recovered?

Recovery

64

How do we recover from a (transient)
subordinate crash in Phase 1?

What information/communication state is lost?

Can it be recovered?

Recovery

65

How do we recover from a (transient)
subordinate crash in Phase 2?

What information/communication state is lost?

Can it be recovered?

